
Does Wikipedia Information Help Netflix Predictions?

John Lees-Miller, Fraser Anderson, Bret Hoehn, Russell Greiner
University of Alberta

Department of Computing Science
{leesmill, frasera, hoehn, greiner}@cs.ualberta.ca

Abstract

We explore several ways to estimate movie similarity
from the free encyclopedia Wikipedia with the goal of im-
proving our predictions for the Netflix Prize. Our system
first uses the content and hyperlink structure of Wikipedia
articles to identify similarities between movies. We then
predict a user’s unknown ratings by using these similarities
in conjunction with the user’s known ratings to initialize
matrix factorization and k-Nearest Neighbours algorithms.
We blend these results with existing ratings-based predic-
tors. Finally, we discuss our empirical results, which sug-
gest that external Wikipedia data does not significantly im-
prove the overall prediction accuracy.

1 Introduction

Netflix distributes movies via an internet site. Their ser-
vice includes a recommender system that suggests movies
to a user based on that user’s past movie ratings. The Net-
flix Prize is a competition to inspire researchers to find ways
to produce more accurate recommendations. In particular,
the challenge is to predict how a user will rate a particular
movie, seen on a specified date. To help, Netflix provides
approximately 100 million ratings for 17 770 movies by 480
thousand users as training data for a collaborative filtering
method. Of these ratings provided by Netflix, 1.4 million
are designated as the probe set, which we use for testing;
see [4].

Previous approaches have achieved considerable success
using only this ratings data [3]. We begin with the hy-
pothesis that external data from Wikipedia can be used to
improve prediction accuracy. The use of such data has
been shown to be beneficial in many collaborative filter-
ing tasks, both in recommendation system and movie do-
mains [7, 12, 16]. Balabanovic and Shoham [1] successfully
use content extracted from an external source, the Internet
Movie Database (IMDb), to complement collaborative fil-
tering methods. Netflix allows contestants to use additional

data, but it must be free for commercial use. Unfortunately,
this eliminates IMDb, even though this is known to be use-
ful for Netflix predictions [14]. Fortunately, this does not
prevent us from using movie information from the free en-
cyclopedia Wikipedia 1.

Data sources such as IMDb and Yahoo! Movies are
highly structured, making it easy to find salient movie fea-
tures. As Wikipedia articles are much less structured, it is
more difficult to extract useful information from them. Our
approach is as follows. First, we identify the Wikipedia ar-
ticles corresponding to the Netflix Prize movies (Section 2).
We then estimate movie similarity by computing article
similarity based on both article content (term and document
frequency of words in the article text; Section 3) and hyper-
link structure (especially shared links; Section 4). We use
this information to make predictions with k-Nearest Neigh-
bors (k-NN) and stochastic gradient descent matrix factor-
ization [3,6,11] (also known as Pseudo-SVD) methods. We
then blend our predictions with others from the University
of Alberta’s Reel Ingenuity team (Section 5).

2 Page Matching

We use a Wikipedia snapshot2 containing roughly 6.2
million articles, most of which are not related to movies.
In order to use the Wikipedia data we must map each Net-
flix title to an appropriate Wikipedia article, if one exists.
We use several methods to find such matches.

One method finds articles using longest common subse-
quence and keyword weighting in the article titles. We put
more weight on words like “movie” and “film,” and less
weight on words like “Season” and “Volume,” which tend
to be present in the Netflix titles but not in Wikipedia arti-
cle titles. This method matches 14 992 Netflix titles with
Wikipedia articles, of which approximately 77% are appro-
priate; here and below, we estimate appropriateness with
spot checks conducted by the authors.

1http://en.wikipedia.org/wiki/Wikipedia:Copyrights
2http://download.wikimedia.org (February 25, 2008)

2008 Seventh International Conference on Machine Learning and Applications

978-0-7695-3495-4/08 $25.00 © 2008 IEEE

DOI 10.1109/ICMLA.2008.121

337

Our second method uses the Yahoo! search API
[18]3. We use three types of queries of varying speci-
ficity. The first query is ‘〈title〉 〈year〉 Wikipedia
(tv or film or movie or video or show)’; the sec-
ond is “‘〈title〉” 〈year〉 Wikipedia’; and the third is
‘〈title〉 Wikipedia’. These queries match 11 704, 15 014,
and 17 201 Netflix titles, of which 73%, 65%, and 70% are
appropriate, respectively.

Our third method uses Wikipedia’s “Year in Film”
pages4; each of these pages links to Wikipedia articles for
many of the movies that were released in its year. We col-
lect all of the “Year in Film” pages and extract all of the
links to movie articles. Each Netflix title is then stripped of
certain keywords such as “Bonus”, “Special” and “Edition”
and compared against these links. We take the link with the
smallest Levenshtein [9] distance to a given Netflix title as
the match for that title. While this method finds matches for
all 17 770 titles, only about 28% are appropriate.

No single method finds a large number of accurate
matches, so we combine our methods in a voting system.
We compare two voting systems in this paper. The first sys-
tem uses heuristic title matching and one search query, and
it accepts a match when both methods agree; this matches
7 938 (43%) of the Netflix titles which accounts for 46%
of the probe set titles (7 720 of 16 938 titles in the probe
set) and 75% of the probe set ratings. The second system
adds Levenshtein distance and two more search queries to
the first system. It accepts the majority match for each title,
where each method has one vote. If none of the methods
agree, the title is marked as having no match; we then, by
hand, select which of the candidate matches is most appro-
priate, or indicate that none are appropriate. This matches
14 681 (83%) of the Netflix titles, of which 93% appear to
be appropriate. These account for 83% of the probe set titles
and 96% of the probe set ratings.

The quality of a match is determined by manual inspec-
tion and personal judgment. For example, even though an
article for Twilight Zone: The Movie is not about The Twi-
light Zone Vol 27, the article about the movie is related to
the article about the television series. The overall quality of
a matched article is judged by manually examining a ran-
dom sample of 200 pairs of Netflix titles and their matching
Wikipedia articles and counting the number of matches that
appear correct.

3 Natural Language Processing

Wikipedia articles are unstructured documents whose in-
formation content is in large sections of plain English text.
We aim to estimate the similarity of each pair of matched

3Use for this purpose does not violate the terms of service; http://
info.yahoo.com/legal/us/yahoo/api

4http://en.wikipedia.org/wiki/List of years in film

pages, assuming that this is also an estimate of the similarity
of the corresponding movies. Figure 1 shows the process of
extracting similarity measures from the article text for use
in the predictors.

Figure 1. Processing flow for predicting
movie ratings based on article content.

We begin by preprocessing the Wikipedia articles to re-
move the comments and markup. We also remove extra
metadata relating to Wikipedia internals, formatting rules,
and other unimportant information as well as removing all
non-alphanumeric characters, which are abundant in the
Wikipedia markup.

Next, we use the Porter stemmer [17] to reduce each
word to its root word, making it easier to find shared
words despite differences in form. For example the words
“watched”, “watching”, and “watcher” all reduce to the root
word “watch.” This significantly reduces the size of the set
of terms. For the smaller (7 938) set of Wikipedia articles
about movies, the stemmer reduced the number of unique
terms from nearly 200 000 to roughly 150 000.

After stemming, the text is stripped of stop words, which
are words that do not add meaning to the sentence but are
required in order to make it grammatically correct; these
are words such as “a”, “the” and “which”. We remove all
occurrences of words that are present in the Snowball list
[5], which contains 174 stop words.

After stemming and stop word removal, we use term fre-
quency - inverse document frequency (TF-IDF) to estimate
the importance of each word in each article. This involves
constructing a large vector for each article whose compo-
nents each represent the number of times that a unique word
is used in the article (the term frequency, or TF), scaled rel-
ative to the number of times that word was used throughout
the set of articles about movies (the document frequency, or
DF). We take the logarithm of each component (TF/DF),
as the TF-IDF.

We define the similarity between two articles as the co-
sine of their TF-IDF vectors. For each pair of article vec-
tors, a and b, the cosine similarity between the two articles

338

is computed as:

cos (a, b) =
a · b√

a · a · √b · b
This produces a value between -1 and 1 that corresponds
to the similarity between each pair of articles. This is a
common method for computing document similarity in the
natural language processing domain; it is easy to compute,
and it eliminates the effects of relative document length by
including a normalization factor.

Many Wikipedia movie articles (14 603 of the 14 681
matched articles from Section 2) have an “InfoBox Film”
side panel that lists movie features like genre, director and
principal actors. As well as using the whole article text to
find words for the TF-IDF approach, we also present re-
sults using only this side panel, with the aim of gauging the
value of the whole article text relative to these commonly
available movie features.

4 Link Similarity

When users write Wikipedia articles, they are encour-
aged to add links to other relevant pages [19]. This advice
is not universally followed, but many articles are carefully
linked to other articles. For example, in the article for the
1999 film The Green Mile, the first paragraph contains the
following links (underlined):

The Green Mile is an Academy Award-
nominated 1999 American drama film, directed
by Frank Darabont and adapted by him from the
1996 Stephen King novel The Green Mile. The
film stars Tom Hanks as Paul Edgecombe and
Michael Clarke Duncan as the 8 foot giant John
Coffey.5

The links identify several salient features of the film,
here its genre, director and principal actors. We can charac-
terize each movie article based on its list of links, rather than
its words. This is helpful because there are fewer links per
article than words, and because this avoids having to per-
form stemming and stop word removal. Many pages also
contain complete cast lists with links to all major and mi-
nor actors in the film. However, most pages also contain
links that do not seem to be important in characterizing the
movie. For example, the article for the 2000 film Miss Con-
geniality links to each of the 21 countries in which the film
was released.

4.1 Weights from TF-IDF and Page Rank

Here we use TF-IDF on links and Page Rank [10] to
estimate the importance of links. The simplest model for

5Retrieved on May 28, 2008.

understanding Page Rank is the “random web surfer.” Upon
reaching a page, this surfer chooses one of the links on the
page uniform-randomly and follows it; this process repeats
many times. The rank of a page measures how often the
the random surfer visits it. More formally, the rank R(p) of
page p is given by the recurrence

R(p) = c

⎛
⎝ ∑

q∈B(p)

R(q)
|F (q)| + E(p)

⎞
⎠

where B(p) is the set of links from other pages to page p
(back links), and F (q) is the set of links that page q links to
(forward links). The scalar c is a normalization constant that
ensures that

∑
p R(p) = 1. The value E(p) can be used to

target the rankings toward a particular topic (movies, for ex-
ample); pages with a high E value are given a higher apriori
importance.

Page Rank was designed to improve search engine per-
formance on vague queries [10]; the search engine should
return more “important” (higher ranked) pages first. We use
Page Rank to measure the importance of connections be-
tween movies. For example, two movies may have several
minor actors in common, but we anticipate this will have
little impact on how people relate the two movies. If two
movies both star the same celebrity actor, however, the con-
nection is likely to be much more meaningful. For exam-
ple, even Star Trek fans must admit that Brad Pitt is better
known than Jonathan Frakes, and sure enough, they rank
30 343rd and 149 330th, respectively 6. Of course, not
all links are meaningful in an obvious way. Many highly
ranked articles are about countries (the United States, for
example), and many movie pages list all countries of re-
lease; it is unlikely that these are meaningful connections.

To estimate the similarity of two pages based on their
links, we apply cosine similarity to a modification of the
TF-IDF vectors (see Section 3). We first find all pages q
that are linked from at least one matched movie page. The
modified TF-IDF vector for a matched movie page p has
one component for each linked page q, whose value is

TF (p, q) × R(q)α

DF (q)
(1)

where TF (p, q) is the number of times that a link to q
appears on page p, and DF (q) is the number of matched
movie pages that link to q. To motivate the inclusion of the
Page Rank R(q) in the numerator, we return to the example
of Brad Pitt and Jonathan Frakes. There are 624 pages that
link to the article on Brad Pitt and 146 pages that link to
the article on Jonathan Frakes. So the document frequency

6Ranks are based on global (not biased toward movies) ranking, with
|E| = 0.1, convergence 1 × 10−5. Ranks range from 1 to 6.2 million.
The corresponding R(p) values are 4.2 × 10−6 and 1.5 × 10−10.

339

of Brad Pitt is higher, and his links will have lower TF-IDF
weights, even though he is a more popular actor and (we
assume) has more influence on movie similarity. The Page
Rank counteracts the effect of the document frequency, to
account for this popularity effect.

The α parameter is introduced because R(p) has a very
large range (roughly 10−14 to 10−3), and the R(p) values
of pages near the top of the ranking are several orders of
magnitude larger than those farther down. When α = 0.1,
the range of the numerator is compressed to the range 10−2

to 1, which is comparable to the range of the denominator.

4.2 Weights from Rating Similarity

As another way to determine which links are relevant to
predicting ratings, we use the ratings data for frequently-
rated movies to weight links. We observe that k-NN meth-
ods using ratings-based similarity are quite successful when
the query movie and neighbour movies have many raters in
common, so we have high confidence in the ratings-based
similarity estimates for pairs of frequently-rated movies. If
a link appears on the matched pages for frequently-rated
movies with similar ratings, we weight it heavily when com-
puting the similarity between movies from Wikipedia con-
tent. Links that appear on the matched pages for movies
with dissimilar ratings are taken to be less relevant and re-
ceive less weight.

We first identify the subset of movies Mr with at least
r ratings in the training set. We then compute the ratings-
based similarity S(m,n) for all movies m,n ∈ Mr using
Pearson correlation on the ratings in the training set after
removing global effects, as in [2]. For each Wikipedia page
q, we form the set Br(q) of movie pages for movies in Mr

that link to page q. The ratings-based similarity weight of a
link to page q is then computed as

RSW (q) =
|Br(q)| × S̄(q)
|Br(q)| + δ

(2)

where S̄(q) is the arithmetic mean of S(m,n) over all
m,n ∈ Mr for which the matched movie pages both link to
page q. Some pages q have no links from pages for movies
in Mr, so Br(q) is empty, and in this case we set S̄(q) = 0.
For other pages, Br(q) is non-empty but small; in these
cases it is helpful to introduce a prior link weight. We in-
clude δ to shrink the link weights toward zero (that is, links
have no apriori importance), when Br(q) is small.

Having computed the similarity link weights, we then
apply the cosine similarity measure as before. The vector
for a matched movie page p has one component for each
linked page q, whose value is RSW (q) if p links to q and 0
otherwise.

Which of the links are most important in determining
rating similarity is interesting in its own right. Eight of the

ten most heavily weighted links pertain to the 1959 televi-
sion series The Twilight Zone. Many other heavily weighted
links pertain to the popular manga series Dragon Ball and
American television actors. It appears that the most heavily
weighted links correspond to “cult” items, which is intu-
itively appealing. We conjectured earlier that a link to Brad
Pitt would be more important than one to Jonathan Frakes,
and that both would be more important than a link to United
States. In fact, these results indicate that Frakes (0.103) is
a better similarity indicator than Pitt (0.001). Our assertion
about the United States appears to be correct; it has weight
−0.006. 7

5 Experiments

For the experiments conducted, we train on the training
set with the probe set removed, and we test our predictions
on the probe set. Note that Netflix withholds a further 2.8
million ratings as the qualifying set, which they use to test
predictions for the prize; we have not tested our predictions
on this qualifying set.

5.1 Prediction

The content- and link-based methods discussed above
each generate a similarity matrix containing the similarity
of each movie-movie pair with matched Wikipedia articles
(rows for unmatched movies are set to zero). To predict
user ratings from this similarity matrix, we use a k-Nearest
Neighbors (k-NN) algorithm and a Pseudo-SVD algorithm.
Each of these methods combines the similarity estimates
from Wikipedia with ratings from the training set to predict
ratings in the probe set.

The successful Pseudo-SVD method [6,11] requires an
initial set of k movie features for each movie, before the
iterations begin. We choose these to be the first k princi-
pal components of a similarity matrix that is derived from
Wikipedia content. We then run the Pseudo-SVD variant as
described in formula 7 of [3]. We initialize movie feature
values for unmatched movies to 0.1.

The k-NN method enumerates, for each user-movie
query, all movies rated by the query user and then chooses
the k movies most similar to the query movie. It predicts
a rating from a similarity-weighted linear combination of
the user’s ratings of these k “neighbour” movies. We use
the following definition of movie similarity to account for
rating, viewing and Wikipedia data.

Let m and n be movies, and let U(m,n) be the set
of users who have rated both movies. Let cos(m,n)
and Pearson(m,n) be the cosine similarity and Pear-
son correlation (see [2], for example) of the ratings

7Here r = 0 and δ = 10. There are 201 378 links with weights ranging
from −0.180 to 0.489 with mean 0.023.

340

over this set U(m,n). We also define V (m,n) =
|U(m,n)|/(|U(m,n)| + β) as the “viewing similarity,”
where β > 0 is a user-defined parameter, here set to 500.
This viewing similarity is high when there is a large group
of users who have rated both movies (regardless of how
they rated them). Denoting the similarity estimate from
Wikipedia as W (m,n), we then compute the similarity of
movies m and n as

V (m,n)[w0cos(m,n)+w1Pearson(m,n)]+w2
W (m,n)
|U(m,n)|γ

(3)
where w0, w1, w2 and γ are free parameters. We typi-
cally set γ = 0.9. Because the cosine and Pearson terms
are unreliable when the set of common users is small, we
weight them by the viewing similarity V (m,n). We divide
the Wikipedia similarity W (m,n) by |U(m,n)|γ because
we assume that the need for Wikipedia similarity data is in-
versely related to the amount of ratings data available.

5.2 Blending

Bell et al. [4] (and many others) show that blending a
large number of predictors can yield better predictions than
any of the predictors alone. If mistakes in the predictions
based on Wikipedia data are independent of those based
only on ratings, the Wikipedia predictors should be valu-
able members of the blend.

We begin with a probe set prediction from each of our
predictors, writing the predicted ratings in the same order as
the probe set. These form a matrix M with one row for each
probe set rating and one column for each predictor. We then
solve the least-squares problem MTMx = MTy, where y
is the vector of true probe set ratings, and x is the blending
weight vector with one component for each predictor. Note
that we have used the true probe set ratings to compute these
blending weights; we use the probe set RMSE for the blend
as an indicator of how well the blend would perform on the
qualifying set.

We can improve these blending results by dividing the
probe set into categories and solving a separate least-
squares problem for each category. We test two different
categorization schemes, each based on the training set after
removing the probe set.

1. User categorization. We divide the users into 9 cate-
gories based on how many movies each has rated. The
category boundaries are 10, 30, 50, 100, 200, 400, 600
and 800 movies.

2. Movie categorization. We divide the movies into 11
categories based on how many users have rated them.
The category boundaries are 200, 400, 800, 1 600,
3 200, 6 400, 12 800, 25 600, 51 200 and 102 400
users.

Table 1. Probe RMSEs on matched movies:
k = 24-NN with Wikipedia similarity only.

Wiki Similarity Parameters RMSEa

text TF-IDF 0.97113
box TF-IDF 0.97648

α
link TF-IDF 0 (8k) 0.97508
link TF-IDF 0.1 (8k) 0.97521
link TF-IDF 0 0.96932
link TF-IDF 0.1 0.96938

r δ
link RSW 0 0 0.96452
link RSW 0 10 0.96582
link RSW 500 0 0.96636
link RSW 500 10 0.96847

aTo help calibrate these, note that Netflix’s original recommendation sys-
tem, Cinematch, achieves an RMSE of 0.9514; the best RMSE on the leader-
board, at the time of submission, is 0.8643.

We choose the category boundaries so that each cate-
gory has a reasonably large number of probe set ratings;
the smallest categories contain 48 521 and 19 969 ratings
for user and movie categorization, respectively.

5.3 Results and Discussion

Table 1 lists the RMSEs obtained from the k-Nearest
Neighbours method with k = 24 using our Wikipedia sim-
ilarity measures, but no ratings-based similarity data; that
is, w0 = w1 = γ = 0 and w2 = 1 in (3). Here we
make predictions only for queries about movies that we
have matched in Wikipedia. The 7 938 (“8k”) matches (Sec-
tion 2) account for 75% of the probe set queries; the 14 681
(“15k”) matches account for 96%. All of the results in Ta-
ble 1 are for the “15k” matches, except for the two marked
“8k.” The “text” and “box” TF-IDF results are from Sec-
tion 3, using the whole article text and only the side panel,
respectively. The link TF-IDF and RSW results are from
Sections 4.1 and 4.2, respectively.

The reported RMSEs are poor relative to similar ratings-
based methods. They are similar to the results from a slope
one predictor [8] (RMSE roughly 0.984), which is equiv-
alent to our implementation of k-NN with all similarities
set to 1. This suggests that the movie similarities computed
using Wikipedia content are only weakly indicative of user
rating patterns. Results based on links are consistently bet-
ter than those based on text content; this supports our asser-
tion that the page links contain salient features.

Table 2 lists the RMSEs obtained from the Pseudo-SVD
and k-NN methods using both ratings and Wikipedia data

341

Table 2. Probe RMSEs: Wikipedia and ratings.

Wiki Similarity Parameters RMSE
PSVD k-NN

none 0.90853 0.92162

text TF-IDF 0.91316 0.92928
box TF-IDF 0.91290 0.92830

α
link TF-IDF 0 (8k) 0.90855 0.92469
link TF-IDF 0.1 (8k) 0.90845 0.92470
link TF-IDF 0 0.90875 0.92463
link TF-IDF 0.1 0.90891 0.92463

r δ
link RSW 0 0 0.90918 0.92456
link RSW 0 10 0.90938 0.92452
link RSW 500 0 0.90903 0.92456
link RSW 500 10 0.90945 0.92453

in (3). For k-NN, we set w0 = 0.688, w1 = 0.112 and w2 =
4.0, which gives the best final blend results in our empirical
tests. Here we make predictions for the whole probe set,
including both matched and unmatched movies, using the
similarity data from the “15k” matches (except for the two
rows marked “8k”). The results when using Wikipedia data
are consistently worse than those using only ratings data.
However, if the mistakes in the Wikipedia predictions were
relatively independent of those made by the ratings-based
predictor, we would expect an improvement in the blend
RMSEs.

In Table 3, we blend each Wikipedia similarity measure
and method with its ratings-only counterpart. Here we use
the “15k” matches, α = 0 in (1) for link TF-IDF, and we
set r = 500 and δ = 10 in (2) for link RSW; the alterna-
tives yield very similar results. Comparing the blend RM-
SEs with results before blending, from Table 2, we see that
blending consistently improves the RMSE.

We then add all of our new results to the Reel Ingenu-
ity team blend, which combines predictions from a variety
of ratings-only methods.8 These include several variants
of k-NN, Pseudo-SVD and other matrix factorization meth-
ods [4], as well as Restricted Boltzmann Machines [15] and
several simpler predictors such as constants, movie and user
averages, k-means and slope one, for a total of 88 result sets.
We achieve a modest overall improvement, with the RMSE
decreasing from 0.88061 to 0.88033 on the probe set.

One of our main assumptions is that Wikipedia similar-
ity data is most useful for movies that have few ratings.

8http://www.aicml.ca - Reel Ingenuity was ranked number 15 on
the leaderboard at the time of submission.

Table 3. Probe RMSEs: blends.
Ratings Only Prediction + Wiki Similarity Prediction
Wiki Similarity Categories RMSE

PSVD k-NN
(result before blending) 0.90853 0.92162

text TF-IDF none 0.90714 0.92152
text TF-IDF user 0.90687 0.92123
text TF-IDF movie 0.90711 0.92098

link TF-IDF none 0.90759 0.92158
link TF-IDF user 0.90750 0.92109
link TF-IDF movie 0.90754 0.92108

link RSW none 0.90782 0.92157
link RSW user 0.90759 0.92109
link RSW movie 0.90776 0.92106

Reel Ingenuity Blend
Similarity Categories RMSE
none none 0.88251
none user 0.88061
none movie 0.88122
all from Table 2 user 0.88033
all from Table 2 movie 0.88092

For this reason, we hypothesized that movie categoriza-
tion would be more effective than user categorization, and
that the weight of the Wikipedia-based predictions would be
larger in the categories with movies with few ratings. How-
ever, the results in Table 3 are mixed. While the weight of
the Wikipedia-based predictions in the blend is sometimes
the highest in the category for least-rated movies, the cate-
gory weights do not always follow the number of ratings.

Toward explaining this, we note that Wikipedia content
is generally created by people with an interest in the topic,
so it is reasonable to believe that more popular topics are
more likely to have articles, and that these articles will be
of higher quality. Thus a movie with fewer ratings (indicat-
ing low general interest) is less likely to have a high-quality
Wikipedia page than a movie with many ratings.

We also note that the probe and qualifying sets contain
more ratings from users with few known ratings than would
be present in a random sample [13], but that this is not the
case with movies; movies with few ratings in the training
set also have few ratings in the probe and qualifying sets.
So, we cannot have more categories for movies with few
ratings, which would give more freedom in the blend, and
still maintain a large number of ratings in each category,
which is necessary to avoid overfitting. Moreover, because
movies with few ratings in the training set also appear less
frequently in the probe set, they do not contribute as much
to the overall probe RMSE.

Another major question is, to what extent is the con-

342

tent of Wikipedia pages relevant to user ratings? The fairly
poor results in Table 1 and the small overall improvement
to the blend RMSE suggest that the Wikipedia content is
only weakly related to user ratings, but we cannot yet an-
swer this question quantitatively. There are clearly limits
on how many aspects of movie similarity we can represent
with a single number. For example, our text TF-IDF method
finds that Josh Groban: Live at the Greek and Outkast: The
Videos are both similar to Ricky Martin: One Night Only.
These titles are all similar in that they are music-related
DVDs, but it is not clear that a user who likes Ricky Mar-
tin’s pop music will also like Josh Groban’s opera, or Out-
kast’s hip-hop. Adding more movie features, like genre or
principal actors, is difficult in Wikipedia because that infor-
mation is not available in an explicitly labelled form, as it
is in the Internet Movie Database (IMDb) and other propri-
etary data sources.

Contributions

This paper has explored a number of ways to use Wikipedia
data to determine movie similarity, hoping to make more
accurate predictions for the Netflix Prize.

We introduced a novel ensemble system for matching
movies with Wikipedia pages, which obtains a large num-
ber of pages that correspond to Netflix movies. We explored
Page Rank as a measure of article popularity and incorpo-
rated it into the TF-IDF computations. We used ratings data
to infer which links on Wikipedia are most relevant to pre-
dicting movie ratings. We restricted TF-IDF components to
links rather than words in Wikipedia articles and produced
similar results with less computation. We used the principal
components of a similarity matrix to initialize the Pseudo-
SVD method.

Unfortunately, these techniques did not improve signif-
icantly upon those of a mature ratings-based recommenda-
tion system; our best result improves the probe RMSE of
the Reel Ingenuity blend by 0.00028. We conjecture that
this is because the situation where external information can
be most useful – dealing with movies with few ratings – is
where Wikipedia provides the least help, as the associated
pages are often either absent or impoverished.

Acknowledgments

We would like to thank Aaron Young, Eric Coulthard, and
the whole Reel Ingenuity Netflix team for their help and
feedback. We would also like to thank the Alberta Ingenuity
Centre for Machine Learning for providing the computing
power needed to run our experiments, and Nick Salyzyn for
his work on graph clustering similarity measures.

References

[1] M. Balabanovic and Y. Shoham, “Content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, pp. 66-
72, 1997.

[2] R. M. Bell and Y. Koren, “Improved neighborhood-based
collaborative filtering,” in Proc. KDD-Cup and Workshop at the
13th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2007.

[3] R. M. Bell and Y. Koren, “Lessons from the netflix prize
challenge,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 75-79,
December 2007

[4] R. M. Bell, Y. Koren, and C. Volinsky, “Chasing
$1,000,000: How we won the netflix progress prize,” Statistical
Computing and Statistical Graphics Newsletter, vol. 18, no. 2, pp.
4-12, 2007.

[5] R. Boulton, “Snowball,” http://snowball.tartarus.org/.
[6] S. Funk, “Netflix update: Try this at home,” 2006,

http://sifter.org/∼simon/journal/20061211.html.
[7] T. Hofmann and J. Puzicha, “Latent class models for collab-

orative filtering,” in In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, 1999, pp. 688-693.

[8] D. Lemire and A. Maclachlan, “Slope one predictors for on-
line rating-based collaborative filtering,” in Proceedings of SIAM
Data Mining (SDM’05), 2005.

[9] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions and reversals,” Soviet Physics Doklady, vol. 10,
pp. 707+, February 1966.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web,” Stanford
Digital Library Technologies Project, Tech. Rep., 1998.

[11] A. Paterek, “Improving regularized singular value decom-
position for collaborative filtering,” in Proc. KDD Cup Workshop
at SIGKDD’07, 13th ACM Int. Conf. on Knowledge Discovery
and Data Mining, 2007, pp. 39-42.

[12] D. Pennock, E. Horvitz, S. Lawrence, and L. C.
Giles, “Collaborative filtering by personality diagnosis: A hybrid
memory- and model-based approach,” in Proc. 16th Conference
on Uncertainty in Artificial Intelligence, 2000, pp. 473-480.

[13] Prizemaster, “Netflix Prize Forum: On the creation of the
training and qualifying sets...,” 2006, http://www.netflixprize.
com/community/viewtopic.php?pid=2242.

[14] A. Rajaraman, “Datawocky: More data usually beats bet-
ter algorithms,” 2008, http://anand.typepad.com/datawocky/

2008/03/more-data-usual.html.
[15] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted

boltzmann machines for collaborative filtering,” in ICML ’07:
Proceedings of the 24th international conference on Machine
learning. New York, NY, USA: ACM Press, 2007, pp. 791-798.

[16] L. Si and R. Jin, “Flexible mixture model for collabo-
rative filtering,” in Proc. Twentieth International Conference on
Machine Learning (ICML-2003), 2003, pp. 704-711.

[17] C. J. van Rijsbergen, S. E. Robertson, and M. F. Porter,
“New models in probabilistic information retrieval,” 1980.

[18] Wikipedia:Build the web - Wikipedia
http://en.wikipedia.org/wiki/Wikipedia:Build the web.

[19] Yahoo! Search APIs from Yahoo Search Web Service
http://developer.yahoo.com/search/web/.

343

