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ABSTRACT 
Gesture-based interfaces are becoming more prevalent and 
complex, requiring non-trivial learning of gesture sets. 
Many methods for learning gestures have been proposed, 
but they are often evaluated with short-term recall tests that 
measure user performance, rather than learning. We evalu-
ated four types of gesture guides using a retention and 
transfer paradigm common in motor learning experiments 
and found results different from those typically reported 
with recall tests. The results indicate that many guide sys-
tems with higher levels of guidance exhibit high perfor-
mance benefits while the guide is being used, but are ulti-
mately detrimental to user learning. We propose an adap-
tive guide that does not suffer from these drawbacks, and 
that enables a smooth transition from novice to expert. The 
results contrasting learning and performance can be ex-
plained by the guidance hypothesis. They have important 
implications for the design and evaluation of future gesture 
learning systems. 
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INTRODUCTION 
Gestural interfaces are becoming widespread as the adop-
tion of interactive surfaces, touch screens, and tablets in-
creases. The use of on-screen gestures allows displays to be 
multiplexed as both input and output devices. Gestural in-
put is also able to leverage the rich capabilities of the hu-
man motor system, allowing for efficient interaction. The 
difficulty with gesture-based interfaces has been the 
learnability of the systems, as gestures are inherently diffi-
cult to discover and predict without an explicit guide [19, 
39]. Learnability is thus a critical issue, as efficient interac-
tion relies on the ability to execute a large set of memorable 
gestures. 

Learnability of gesture sets involves two factors. The first 
is the cognitive mapping between the desired action and the 
required gesture. This paired-associate type of learning is 
what is typically studied in gesture learning. The second, 
equally important aspect of gestural interactions is the abil-
ity to perform a gesture. Bau and MacKay recognize the 
importance of the gesture execution, stating that users must 
“master the details of drawing the shape to improve recog-
nizer accuracy” [4]. This component of gestural interaction 
becomes increasingly important as the use of gestural inter-
faces continues to grow, and devices rely solely on gestural 
input. In the case of experts, many of their input sequences 
are largely automatic, relying primarily on responses from 
the motor system. Motor performance is important for nov-
ices as well. As the size of gesture sets is increasing (e.g, 
40 targets [23]), both novices and experts have to perform 
gestures with increasing accuracy in order for the recogniz-
er to distinguish them from other, potentially similar ges-
tures. It is also foreseeable that advanced gestural interfaces 
will allow users to modify parameters of commands by 
producing variations on gestures, which again require some 
skill to perform. 

Researchers have acknowledged the difficulty in using 
complex gestural interaction systems and have developed a 
number of systems designed to improve the usability and 
learnability of gestural interfaces. As early as 1994, 
Kurtenbach, Moran and Buxton developed animated crib 
notes to help users learn to perform gestures [19]. While 
crib notes alone would be sufficient to aid users in the re-
call of gestures, the addition of in-context animations pro-
vided extra cues that helped users in the execution of the 
gesture. Recently, systems offering dynamic, real-time 
guidance have been proposed [2, 5, 4, 13, 16]. These sys-
tems provide the user with information to help guide the 
execution of a gesture, and they have been seen as an im-
provement to traditional help menus or gesture demonstra-
tions. These guides are believed to improve performance, 
as “feedforward and feedback facilitates learning and exe-
cution of complex gesture sets” [4].  

To date, most studies have evaluated the learnability of 
gestural interfaces by comparing performance measures 
taken during, or shortly after, the training phase of an ex-
periment [3, 4, 7]. These often include gesture recall, fre-
quency of gesture use, or input speed. Although this eval-
uation is direct and intuitive, as it mimics real world use 
cases, it does not necessarily evaluate how well the partici-
pants learned the gestures.  

The field of motor learning has established methods for 
assessing the ability to learn and execute movements. This 
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field is concerned with a wide range of activities, from 
simple movements (e.g., pointing and grasping [10]) to 
complex skills such as surgical movements [8] and sports 
[15]. The motor learning literature acknowledges a critical 
difference between performance and learning [31]: Perfor-
mance refers to the production of a specific action, whereas 
learning refers to the relatively permanent acquired capa-
bilities that facilitate improved performance. Empirical 
studies that separate performance from learning involve a 
training phase followed by a retention component and a 
transfer component. In the retention component, partici-
pants perform the task at a common level of the independ-
ent variable, typically 24 to 48 hours after training. In the 
transfer component, participants perform a novel variation 
on the task they were trained on, e.g., performing the task 
with the other limb.  

The separation between learning and performance becomes 
even more important when considering the guidance hy-
pothesis [30]. The guidance hypothesis states that excessive 
guidance during training can hinder learning, as the user 
can become reliant on the guidance. Guidance can take the 
form of knowledge of results (KR), which is information 
regarding the success or failure of a movement, or 
knowledge of performance (KP), which is information re-
garding how the participant and target movements differ. 
The amount of guidance provided to a user is an important 
consideration, as many new gesture guides provide concur-
rent or real-time feedback (or ‘feedforward’) to help the 
user execute the gesture. 

This paper makes three main contributions to the literature 
on gesture learning. First, we introduce the use of the reten-
tion and transfer experimental paradigm within the context 
of gesture learning. Second, we analyze four different ges-
tural guides with this paradigm. We find that guides with 
high performance during training result in poor perfor-
mance during retention and transfer, and the converse for 
guides with low performance during training. This indicates 
a tradeoff between ease of use and learning. Third, we in-
troduce an adaptive guide that mitigates this tradeoff, and 
provides a smooth transition from novice to learned user. 
This work has important consequences for the design and 
evaluation of future gestural interfaces.  

RELATED WORK 

Evaluating Gestural Interfaces 
One approach to evaluate gesture-based systems is to ana-
lyze behavior while participants are using the gesture sys-
tem. In these studies, researchers typically analyze the fre-
quency with which the gestures are used, the rate of gesture 
input, or user preference with the gesture system [6, 21]. 
Appert and Zhai analyzed preference and memorability for 
keyboard shortcuts and gestures after training with both 
systems [3]. They found users did not have to consult the 
help menu system as often with gestures, and the use of 
gestures resulted in faster and more accurate recall of menu 
commands. To evaluate their menu-based gestural learning 
system, GestureBar, Bragdon et al. analyzed the number of 
correct gestures and the number of attempted gestures as 

participants used a gestural diagram editor [7]. Kurtenbach 
et al. evaluated the performance improvements over time as 
participants learned to use marking menus [18]. These sys-
tems evaluate user behavior while they are actively using 
the system, but do not separate performance from learning. 

Another approach to evaluate gesture systems is to evaluate 
the ability to recall specific gestures after training [6]. To 
evaluate their dynamic and traceable gestural guide, Oc-
toPocus, Bau and MacKay compared participants’ ability to 
recall gestures before and after training with a gesture sys-
tem and a traditional help-window [4]. In the evaluation of 
a multi-touch gestural guide system, ShadowGuides, partic-
ipants recalled gestures immediately following a training 
phase with ShadowGuides or a video-based guide [13]. 
Zhai and Kristensson extended this paradigm over several 
days of training and testing to evaluate the ability of partic-
ipants to recall 100 gestures [42]. Though the stated aim of 
some of these systems is to assist users in the performance 
or execution of the gesture, they tend to focus on the cogni-
tive component of gesture learning as measured by recall. 
While recall is a useful measure to assess the degree to 
which the action-gesture pairing was learned, these studies 
do not analyze the motor component of the gesture and are 
not able to fully isolate performance from learning. 

A third approach to evaluate gesture systems is to achieve 
peak performance on a subset of representative gestures, 
and use this to predict expert behavior [17, 43]. This ap-
proach evaluates the potential bandwidth of a gestural in-
teraction system, but does not assess gesture learnability.  

Retention and Transfer 
The use of retention and transfer tests is standard in motor 
learning literature, as they allow the researcher to separate 
the effects of performance factors from learning factors 
[32]. Performance factors have effect only for a short time, 
whereas learning factors have effect much longer after 
training. While it is commonly believed that increased per-
formance on practice trials is indicative of learning, 
Schmidt and Bjork [32] point out that this is not the case. 
Drawing from examples of motor and verbal tasks, they 
show that performance during practice is not indicative of 
learning, but only evident through retention and transfer 
tests. 

Typically, researchers use one or more retention tests, with 
a delay of 15 minutes, 1 hour, or more than a day later [35]. 
Tests are frequently performed after at least one full night 
of sleep (e.g., 24 hours), as sleep has been shown to play an 
important role in the consolidation of motor skills [29]. The 
task performed during retention tests is usually similar to 
the task performed during training, but with all participants 
moved to the same level of the independent variable, which 
is often the removal of all feedback [31].  

Transfer tests are another way to assess learning, as the 
mental changes associated with learning one skill will fre-
quently be generalizable to another, very similar skill. The-
se tests can also show how well a learned skill generalizes 
to a new context. In a transfer task, participants are asked to 
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perform the trained task, but with a novel variation. For 
instance, participants might be asked to perform a learned 
skill at a different scale or angle [1]. These types of tests 
are widely used in motor learning, and many skills show 
substantial transfer. 

There has also been substantial work within the motor 
learning field on bilateral transfer, i.e., the degree to which 
a skill learned on one hand transfers to the other. While 
there are no steadfast rules on what parameters or types of 
skills transfer from one hand to the other, it is clear that 
there is often a substantial amount of transfer that takes 
place [25, 28]. These studies show that transfer takes place 
even when participants are not ambidextrous. While bilat-
eral transfer is not of direct and obvious benefit to many 
HCI scenarios, it is perhaps the simplest and most direct 
manipulation to assess transfer. It requires no software 
modifications, reducing potential errors in the implementa-
tion of the study. Additionally, the purpose of the transfer 
task is not to assess the applicability of the gesture to other 
contexts, but simply to assess the degree to which the ges-
ture was learned. 

Guidance and Effort 
Studies of the guidance hypothesis have explored the ef-
fects of various types of feedback on performance and 
learning. Early studies on guidance focused on the guiding 
effects of KR [38]. Excessive KR encourages participants 
to perform “maladaptive short-term corrections” [30] rather 
than to learn more effective corrections that are useful in 
the longer term. For example, participants showed greater 
learning when KR was presented after a series of trials, 
compared to being presented after each successive trial 
(terminal feedback) [34]. More recently, the guiding effects 
of KP have been shown to be stronger than those of KR 
[20]. Park, Shea, and Wright showed that concurrent feed-
back alone provides a much stronger guidance effect than 
terminal feedback, with higher performance during training 
and much lower performance during retention [24]. 
Schmidt and Wulf found similar results when analyzing the 
ability to learn a spatiotemporal movement pattern with or 
without concurrent feedback [33]. These studies have im-
portant implications for gesture learning as many gesture 
guides present concurrent KP in the form of real-time assis-
tance as the gestures are being performed. 

In a study of gesture-based text entry [11], researchers ma-
nipulated the amount of effort required to view the keys on 
a gesture-based keyboard. They found that the interface 
requiring more effort substantially slowed down training 
and resulted in greater accuracy in remembering the spatial 
location of targets than the less-effortful interface. Similar 
effects have been found during cognitive tasks. van Nim-
wegen and Oostendorp found guiding effects when provid-
ing automated assistance in solving a constraint satisfaction 
task [36]. Rappin et al. found students learned more in an 
interface that forced them to interact with a chemical simu-
lation, rather than simply observe it [26]. These and other 
studies on guidance in human computer interfaces focus on 
increased learning due to effort or cost of interaction [11, 
14, 26, 36]. In contrast, the results from our experiments 

using a retention and transfer paradigm show an effect 
which is not based on effort, and can be better explained by 
the guidance hypothesis. 

In the present work, we unify the existing work in motor 
learning and human-computer interaction in order to better 
study gestural interfaces. By applying the standard evalua-
tion paradigms from motor learning, we are able to study 
how the guidance hypothesis affects gesture learning and 
execution. 

METHODS 

Participants 
A total of 36 subjects participated in the study (15 male, 
18-77 years, M=25 years, SD=11 years). While research 
with older users presents its own challenges [41], only one 
participant was over 60 years of age, and their data was not 
abnormal. All participants were right-handed, as deter-
mined by the Edinburgh handedness inventory [22]. Each 
participant was assigned to one of four gesture guides: crib-
notes, static-tracing, dynamic-tracing, or adaptive which 
are described below. Before beginning the training phase, 
each participant was informed that there would be a follow-
up test, but were not informed of the nature of this test. 

Apparatus and Gestures 
The experiment was performed using a pen-based Cintiq 
21UX from Wacom, with the screen positioned directly in 
front of the participant at a 10° incline. The software was 
developed using the Windows Presentation Framework, 
and ran full-screen at 1600 x 1200 pixels. For reference, the 
display size of the screen is (43 cm x 32.5 cm), resulting in 
a mapping of 1 px = 0.27 mm. The buttons on the pen were 
not used; all interaction was accomplished through the con-
tact and motion of the pen on the screen. 

Each of the four gestures (see Figure 1b) was composed of 
one or two simple line or curve segments and paired with 
an arbitrary, unrelated verb. All gestures were the same 
length and defined by a single, computer-generated tem-
plate rather than as a series of user-generated examples. 
The gestures were designed to cover a wide range of possi-
ble gestures, as all gestures can be described as a series of 
curves, lines, and corners [9]. The initial angle of each ges-
ture was rotated such that it did not coincide with a major 
axis or a diagonal. While typical gesture systems use more 
than four gestures, this study is intentionally restricted to 
analyzing only four. If more gestures are added, partici-
pants have a difficult time learning the pairing between 
gesture and command, i.e., they struggle at the ‘cognitive’ 
phase of Fitts and Posner’s model rather than progressing 
through to the associative or autonomous phases [12]. As 
the intent is to study the production and form of the ges-
ture, the use of four gestures allows participants to quickly 
learn the pairing so they can then better learn the form. 

The red gesture, paired with ‘Choose’, was two straight 
lines of equal length joined by an obtuse angle. The green 
gesture, paired with ‘Send’, was a curve of constant radius, 
sweeping out a 180° arc. The blue gesture, paired with 
‘Build’, was a curve of constant radius connected to a 
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straight line. Lastly, the orange gesture, paired with ‘Find’, 
was composed of a long straight line connected to a short 
straight line at a 90° angle. 

Guide types 
We evaluated four types of gesture learning systems. Three 
of the guides have been previously described in the litera-
ture or are very similar to previously described guides 
(crib-notes, static-tracing, and dynamic-tracing), while the 
fourth (adaptive) is a novel contribution. 

The crib-notes guide used a half-scale depiction of the ges-
tures placed in the top-left corner of the screen (Figure 1a). 
Participants using this system were not informed of the 
scale relation between the guide and the target gesture, and 
learned the appropriate scale through the KP provided after 
each trial. This guide provides the least guidance, as partic-
ipants cannot directly compare their current trajectory to 
the template and the template does not adapt to their 
movement. 

The static-tracing guide used a full-scale depiction of each 
of the template gestures, radiating from the initial pen loca-
tion (Figure 1b). This guide allowed the participant to trace 
over the target gesture. As the participant drew their stroke, 
the guide was not updated in any way. The use of this guide 
allowed us to examine what effects the continuous updating 
has on the learning and performance of the gestures. 

The dynamic-tracing guide (referred to as ‘dynamic guide’ 
in Bau and MacKay [9]) used a full-scale depiction of the 
gestures, as with the static-tracing guide, but as the partici-
pant moved the pen, the guide dynamically updated to re-
flect the state of the recognizer (Figure 1c). As the partici-
pant drew their stroke, the opacity of each of the four ges-
tures was mapped to a function of the similarity between 
the participant’s trajectory and the template of the target 
gesture. Gesture similarity during training was measured by 
computing the RMSE between the participant’s trajectory 
and an equivalent path length from each of the target ges-
tures. In addition to modifying the opacity of the guide 
strokes, the initial segment of each the template gesture was 
removed (an amount equal to the current participant’s 
stroke length), and the result is appended at the current pen 
location. This procedure effectively provided the ‘feedfor-

ward’ information to help guide the participant to the cor-
rect performance. 

The adaptive guide provided a traceable guide identical to 
the one used in the static-tracing condition, but the guide 
disappeared at some point in time during the trial. The cur-
rent trial as well as the current length of the participant’s 
stroke determined when the guide disappeared. For the first 
trial, the guide disappeared once the participant’s stroke 
had the same path length as the target gestures. Midway 
through the trials, the guide disappeared once the partici-
pant’s stroke was half the path length of the target gestures. 
By the end trial, the gesture guide did not appear at all. This 
approach let participants initially trace the gestures with 
high accuracy and usability, but eventually required them 
to draw the gestures without the guide. While the imple-
mentation of this guide for the lab study is straightforward, 
as the number of trials is known, the implementation in a 
real-world scenario is potentially more difficult. Various 
methods of implementing an adaptive guide in a real-world 
scenario are described in the Discussion section. 

All of the guides used in this study were not dynamic in the 
sense that they changed scale or orientation in response to 
the user’s strokes, as in other recent guide designs [2,25]. 
This is an intentional choice, as it allows control over the 
exact gesture being learned by the participants. This deci-
sion allows more precision in studying the effects of the 
guide on learning a particular gesture. It is highly unlikely 
that the ability to change scale or orientation will have any 
effect on the degree to which the user is guided, or subse-
quently learns the gesture. Once a user determines or se-
lects a particular scale and orientation, they will likely use 
the guide to continue drawing the gesture at that particular 
scale or orientation. That is, the users would still be guided 
to the same degree, they would just be guided to a different 
target gesture.  

Procedure 
Participants were shown where to place the pen on the 
screen to activate the guide and where their score would 
appear. They were told to accrue as many points as possible 
and that their score was derived from the similarity to the 
target gesture, with additional points for faster perfor-
mance. To compute the points, the training system awarded 

a) 

 

b) 

 

c) 

 
Figure 1: Behavior of the guides while performing the Send gesture during training trials for a) crib-notes, b) static-
tracing, and c) dynamic-tracing. Note that adaptive is not shown as its behavior is identical to the 'static-tracingʼ 
guide, except the guide is removed partway through the trial. 
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the user with points proportional to an execution time under 
four seconds and an accuracy error under 220 pixels. For 
instance, if the gesture was completed in two seconds with 
30 pixels of error (i.e., average crib notes performance half-
way through the trials) the participant received 197 points. 

The training phase consisted of 60 trials for each gesture, 
with the presentation order randomized such that no gesture 
appeared in more than two successive trials. At the start of 
each trial, the target word appeared at the top of the screen. 
The current score, as well as the target circle, were also 
visible. To begin the trial, the participant placed the pen tip 
in the target circle, which caused the gesture guide to im-
mediately become visible. The participant then drew the 
gesture on the screen, which left a visible ‘ink trail’. When 
the pen was lifted, all on-screen content was hidden for 
1000 ms. The participant was then provided with KP and 
KR, consisting of the target gesture along with the partici-
pant’s trajectory overlaid and the score for the current 
stroke (Figure 2). After 1500 ms of exposure to the KP and 
KR, the screen went blank for 1000 ms, and then the next 
target word appeared. All training was performed with the 
right hand. 

Participants performed retention and transfer tests 15 
minutes after completing the training phase. The retention 
test was similar to the training, with each participant per-
forming 16 trials (4 per gesture, with the order random-
ized), but no guide (KR or KP) was provided. Participants 
were instructed to draw the gestures from memory. They 
were also reminded of the four target words and told to take 
as much time as needed before drawing the gestures. The 
participants were not shown any of the gestures. The trans-
fer test was identical to the retention test (16 trials with no 
guide, KP, or KR), but performed with the left hand. Ap-
proximately 24 hours later, each subject completed the re-
tention and transfer follow-up tests again. 

RESULTS 
Training, retention, and transfer data was analyzed with 
three mixed-design ANOVAs, and post-hoc tests were con-
ducted using Tukey’s HSD. Prior to each analysis, trials 

where the participant performed the incorrect gesture were 
discarded, as the focus of this study was on the form of the 
gesture, not on gesture recall. In other words, these errors 
were removed as we were interested in errors due to per-
formance (i.e., slips) rather than cognitive errors (i.e., mis-
takes). This resulted in less than 1% of data being removed 
from training, retention, and transfer phases. These errors 
were spread evenly across all guides, and came primarily 
from the training data.  

Gesture Similarity 
The similarity of each stroke to the template was computed 
by resampling the template and the participant strokes to 
128 evenly spaced points, then computing the root mean 
square error (RMSE) of the Euclidean distance between 
corresponding points. This method is sensitive to both scale 
and rotation, as participants were instructed to match the 
template gestures along those dimensions as well as shape. 
A graphical representation of the similarity data separated 
by GuideType is shown in Figure 3, and by gesture is 
shown in Figure 4. 

While RMSE is not the most popular method in gesture 
recognition, there are several reasons that make it a good 
choice for analyzing accuracy of motor production. First, 
the use of RMSE gives a direct and accurate measurement 
of the participant’s ability to produce the target gesture. 
Secondly, it does not rely on a collection of high-level fea-
tures (see, e.g., Rubine’s algorithm [27]), the selection of 
which will change with the next advancement in gesture 
recognition. That is, our results are independent of the cur-
rent state of the art in gesture recognition. It is also worth 
noting that the error was also analyzed using the error 
measure used for the $1 recognizer [40], as well as by using 
the number of ‘points’ awarded each trial, and the same 
patterns emerged from the resulting data. 

Training 
The training data was blocked by averaging six consecutive 
trials for each gesture, resulting in a total of 10 training 
blocks. As the error distributions were skewed, a log trans-
form was applied to the RMSE values to normalize them 
before conducting the ANOVA. The same log transform 
was applied to all RMSE values before the analysis in sub-
sequent sections. A 3 (GuideType) x 4 (Gesture) x 10 
(Block) mixed-design ANOVA was conducted with Ges-
ture and Block as within-subjects factors and GuideType as 
between-subjects factor (summarized in Table 1). 

Post-hoc tests on GuideType showed that all guide types 
produced significantly different scores during training. 
From lowest to highest error produced, the guides are: 
‘Static’, ‘Dynamic’, ‘Adaptive’, ‘Crib’. Participants gener-
ally improved during training, with the error in the first 
block being significantly higher than the last block. The 
exception to this is with the adaptive guide, where partici-
pants progressively decreased in performance, due to the 
guide being removed earlier in the trial as they progressed 
through the training. 

The main effect of gesture shows that the ‘Find’ gesture 
was significantly easier to perform than the ‘Choose’ and 

 
Figure 2: Inter-trial screen showing KR (score in top right) 
and KP (trajectory overlay). 
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‘Send’ gestures, and ‘Build’ was easier to perform than 
‘Send’, but the effect sizes were very small, and therefore 
were not analyzed further. 

Retention 
To analyze the retention data, the four trials for each ges-
ture were averaged per participant and analyzed using a 4 
(GuideType) x 4 (Gesture) x 2 (Delay) mixed-design 
ANOVA with GuideType as between-subjects factor and 
Gesture and Delay as within-subjects factors. Gesture was 
not found to be significant (F3, 96  = 0.30, p = 0.83), so this 
factor was pooled and the ANOVA was re-computed. 

Both Delay (F1, 248  = 8.90, p = 0.0031, ω2 = 0.02) and 
GuideType (F3, 32  = 2.93, p = 0.049, ω2 = 0.09) were signif-
icant. Participants trained with crib-notes or the adaptive 
guide had significantly lower retention scores than those 
trained with either of the traceable guides. There was no 
significant difference between the retention scores of par-

ticipants trained with either of the traceable guides. There 
was also no significant difference in the retention scores of 
participants trained with the adaptive guide or the crib 
notes. Performance on the 24 hour follow-up was poorer 
across all participants, compared to the 15 minute follow-
up. 

Table 1: ANOVA results for the training similarity data. 
 
Transfer  
To analyze the transfer data, all four trials for each gesture 
were averaged and analyzed using a 4 (GuideType) x 4 
(Gesture) x 2 (Delay) mixed-design ANOVA with Guide-
Type as between-subjects factor and Gesture and Delay as 
within-subjects factors. Again, the Gesture factor was not 
significant (F3, 96  = 1.23, p = 0.30) and pooled in the re-
ported results. 

The transfer results mimic the same pattern as the retention 
results, as evidenced by a Pearson’s correlation (ρ = 0.85, p 
< 0.001). While the ANOVA did not report significant 
main effects, this similarity in results to the retention re-
sults demonstrates the potential utility of transfer scores. 
One reason for the lack of significant main effects is the 
performance improvement in the crib-notes trained partici-
pants following the 24 hour rest period, contrasted with the 
decreased performance of the participants trained with the 
dynamic guide.  

Duration 
Duration was measured as the time from the pen’s initial 
contact with the screen to when the pen left the screen. This 
measure includes any time the participant spent consulting 
the guide as well as the time to draw the gesture. Duration 
data for the training, retention, and transfer phases are 
shown with results separated by GuideType in Figure 5, 
and results separated by Gesture in Figure 6. 

Training 
The mixed design ANOVA showed a main effect of Block 
(F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There was a signifi-
cant decrease in duration with nearly every block. There 
was also a main effect of Gesture (F3, 72 = 19.3, p < 0.001, 
ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were both per-
formed significantly faster than the ‘Choose’ and ‘Build’ 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 
 

 
Figure 3: Error for training, retention and transfer, for 
each guide type. There is an apparent tradeoff 
between performance during training, and the amount 
of learning, measured by retention and transfer. 

 

 
Figure 4: Error for training, retention, and transfer, for 
each gesture. There are no appreciable differences 
between the performance of each gesture. Error is 
primarily due to the type of training guide used. 
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gestures, but the effect size is very small. GuideType had 
no effect on duration (F2, 24 = 0.53, p = 0.59, ω2 = 0.02). 

Retention 
The retention data shows only a main effect of Gesture (F3, 

96 = 3.95, p = 0.01, ω2 = 0.02). ‘Choose’ is performed sig-
nificantly slower than ‘Send’ and ‘Find’, but again, the 
effect size is quite small. As with the training data, the 
guide type has no effect on duration (F3, 32 = 0.60, p = 0.62, 
ω2 = 0.03). 

Transfer 
There was a main effect of Gesture during transfer (F3, 96 = 
15.86, p < 0.001, ω2 = 0.04). Post hoc tests revealed that all 
gestures were significantly different from each other. In 
increasing order of duration, the gestures are: ‘Send’, 
‘Find’, ‘Choose’, and ‘Build’. These results were very 
similar to the training durations, except that the variance 
between gestures is increased, resulting in higher signifi-
cance. 

DISCUSSION 
The type of guide used during training has clear effects on 
the behavior during training, as well as the retention and 
transfer scores. With high performance during training, 
there is little learned, but with low performance the partici-
pants retained substantially more. Additionally, by adapting 
the guide over time, the participants are able to balance 
performance and learning. These results have important 
implications for both the design of gestural guides, as well 
as for the way they are evaluated. 

Guide Design 
The three ‘traditional’ gesture guides (i.e., static-tracing, 
dynamic-tracing, and crib notes) showed performance im-
provements with training. There was an obvious and signif-
icant difference during training between crib-notes and the 
traceable guides with the crib-notes-trained participants 
performing much worse. Looking solely at the training da-
ta, it appears that the traditional guide types provided equal 
amounts of learning, but the baseline performance for crib-
notes was worse. However, this was not the case. The re-
tention scores, which mimic an expert-usage scenario 
showed the lowest error for crib-notes.  

The newly proposed adaptive guide shows a much different 
result. While the traditional gesture guides lead to im-
proved performance during training, the adaptive guide 
shows a gradual decrease in performance. This perfor-
mance loss is easily explained. As the participant complet-
ed more trials, the guide disappeared earlier and earlier 
during gesture execution, forcing them to perform more of 
the gesture without the guide in place. In contrast to the 
traceable guides (static and dynamic), the adaptive guide 
actually provides a relatively smooth transition from novice 
to expert; there is not a substantial decrease in performance 
when the guide is removed. In contrast to the crib-notes 
guide, the adaptive guide provides a much more usable 
interface to novices, allowing direct tracing and high accu-
racy at the beginning of the training phase. 

With respect to the three traditional guides, it seems that 
the more guidance given during training, the worse the 
learning. The participants using traceable guides had the 
most guidance and the worst performance in retention and 
transfer. Conversely, the participants using crib-notes had 
the least guidance during training but the best performance 
during retention and transfer. These results are explainable 
by the guidance hypothesis, and only become apparent 
within the retention and transfer paradigm. This shows an 
apparent tradeoff between immediate performance and 
learning. In addition, it appears that the dynamic guide has 
no benefit for performance or learning. The dynamic-
traceable guide resulted in worse performance during train-
ing than the static guide, and users of this guide showed 
little to no learning of the gestures during retention and 
transfer. This is interesting, but not entirely surprising. That 
is, anytime the dynamic guide updated, it would necessarily 
deviate from the template trajectory. Thus, participants who 

 
Figure 5: Duration of stroke during training, retention, 
and transfer, for each guide type. Guide type has little 
effect on the speed, allowing the tracing-based guides 
to provide high accuracy without a decrease in input 
speed. 

Figure 6: Duration of stroke during training, retention, 
and transfer, for each gesture. The ʻSendʼ and ʻFindʼ 
gestures are performed slightly faster than ʻBuildʼ and 
ʻChooseʼ. 
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attempted to trace the guide would also deviate from the 
template. However, unlike with crib notes, participants did 
not attempt to use the post-trial feedback (KP) to correct 
their previous errors and learn the correct performance.  

It is clear that the adaptive guide provides a balance be-
tween initial usability and long-term learning. Implement-
ing the adaptive guide in practice, however, is not neces-
sarily straightforward. In the experiment, the number of 
trials was fixed, and a simple linear model allowed us to 
gradually remove the guide. In practice, the user is contin-
uously interacting with an interface for an unknown length 
of time. A simple way to implement the adaptive guide 
would be to monitor the number of times each gesture was 
accessed, and provide less guidance each time the guide is 
accessed, up to some pre-determined threshold.  

Other approaches to achieving ‘adaptive’ style guides are 
possible as well. One simple way would be to add an access 
cost to the guide (e.g., a delay [4]), and let users self-
regulate the appearance of the guide. This approach was 
tried in pilot studies, but did not have the desired effect. 
Many users simply accepted the delay as an intrinsic cost of 
using the interface, even when the delay was long (e.g., 
over 1 second). This behavior was present even through it 
was clearly explained that they did not have to wait for, and 
use the guide.  

In contrast to previous studies, the increased learning ob-
served with crib-notes or the adaptive guides cannot be 
attributed to increased effort. In fact, the crib-notes guide 
requires the least effort, as drawing the gesture does not 
require careful tracing. This was evident with the duration 
data, which showed the crib-notes had marginally faster 
input time during training, especially in the earlier trials. If 
effort were the major determinant of learning, one would 
expect the dynamic-tracing guide to have the best learning 
outcomes, as it requires the most cognitive effort (and time) 
to follow the constantly updating trajectory. 

Overall, the type of gesture guide has little impact on dura-
tion during training, retention, or transfer (see Figure 4). 
This is consistent with Bau and Mackay’s work that found 
no difference in the input time between a help menu and a 
dynamic guide [4]. Participants became faster over time as 
they became more familiar with the gestures. This is an 
important find, as it seems to violate the speed-accuracy 
tradeoff as long as the guide is available. That is, accuracy 
during training using traceable guides is substantially 
greater than crib-notes, but the speed of execution is simi-
lar, particularly after the first few training blocks.  

With these results, it is important to recognize that not all 
gesture-based interactions target expert-level skill acquisi-
tion. Many interfaces are used on an infrequent or casual 
basis, where the user is not expected to perform at maxi-
mum efficiency. For these situations, heavy guidance (with 
ease of use) is more desirable than limited guidance (with 
better learnability). However, if efficient expert use is of 
concern, one may consider a type of guide that initially 

leads to lower performance, but increases learning and 
speeds the progression from novice to expert. 

Evaluation Paradigm 
During retention and transfer, the performance of partici-
pants trained with crib-notes was significantly better than 
the other participants. This demonstrates a severe limitation 
of the training-only evaluation methods, as the performance 
changed drastically when guidance was removed. If only 
the performance data were considered, as in previous stud-
ies, one would have reported that the traceable guides were 
superior with a very large effect size of ω2 = 0.45. Howev-
er, when looking at the retention data to assess the learning 
that occurred, crib-notes proved more effective.  

In addition to the focus on learning, another important dif-
ference of this work is the use of gesture accuracy as the 
outcome measure. Previous evaluations tend to use recall as 
the primary measure [4, 42]. However, as gesture sets be-
come more complex, with a variety of hand shapes and 
strokes, the ability to articulate precise movements will be a 
very important measure of user proficiency. Additionally, 
analyzing the execution of a gesture allows performance 
improvements to be seen for each block, providing a more 
detailed look at how users improve with each system. 

The performance of nearly all participants suffered after a 
24 hour break, with participants that used the traceable 
guides suffering the greatest performance loss. In general, 
this indicates users were ‘forgetting’ how to precisely repli-
cate the gesture. When learning occurs, these losses are 
much less dramatic. These findings demonstrate the utility 
of using delayed retention and transfer, as the separation 
between participants who learned and those who did not 
becomes greater after a night of sleep [29]. This makes it 
easier to pinpoint the factors influencing learning.  

This study has important implications for the evaluation of 
future gesture-based interfaces or interactions involving 
relatively complex movements. When reporting on the ef-
fectiveness of various gesture guides, it is imperative that 
learning be properly assessed, so that designers are aware 
of the implications (both short and long term) of using an 
interface. While this places an additional burden on the 
investigator, it is critical when making claims about the 
learnability of these interfaces. 

This study is limited in the small number of gestures that 
were studied, and the complexity of the gestures. While a 
real-world study involving the learning of dozens of ges-
tures would provide more valid results, such a study is im-
practical to conduct. That being said, it is likely that the 
results of this study will hold even with more complex 2D  
stroke gestures. From the training data, performance plat-
eaus after the 5th or 6th block, so participants are already 
‘overlearning’ the gestures to a degree, yet the effect is still 
clear. Secondly, the guidance hypothesis that underlies the 
results has been demonstrated in a variety of tasks (includ-
ing timing, force production, and figure drawing). While 
this does not guarantee that it will extend to more complex 
gestures, there is nothing to indicate the contrary. Lastly, 
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the gestures were chosen to represent a wide range of po-
tential motor actions. It is not clear, however, that the re-
sults would generate to a 3D stroke gesture scenario, where 
the task is fundamentally more complex and would benefit 
more from guidance [36]. 

It is also important to note that experts do not tend to pre-
cisely reproduce the template. In general, they make simpli-
fications that deviate from the template and allow them to 
produce the gesture more efficiently, but still be recogniza-
ble to the system. While this behavior would not be accu-
rately represented by the strict RMSE measure, our exper-
iments were focused on the reproduction of specific ges-
tures. Similar to the use of a guide that does not adapt to 
scale or orientation, this simplification allowed us to study 
the effect of guidance in a controlled fashion. While we 
anticipate that expert gestures will show more error in a 
real-world scenario, we do not believe that will negate the 
guidance hypothesis as it applies to gesture learning. 

CONCLUSIONS 
With gesture systems that target efficient, expert-usage, it is 
critical to consider the long-term learning of gestures, and 
the effects that guidance can have on both performance and 
learning. Using a novel ‘adaptive’ guide, we demonstrated 
that detrimental effects of heavy guidance can be over-
come, and that gesture guides can produce a smooth transi-
tion from novice to expert. We have also shown that tradi-
tional evaluation techniques can be ineffective in measur-
ing learning itself, and that gesture guides may have un-
foreseen consequences. We have used an established tech-
nique from the area of motor learning to evaluate a repre-
sentative set of gesture guides. We hope researchers and 
practitioners will use these results in the design and evalua-
tion of future gestural interfaces.  

This study provides interesting avenues for future work. 
The first is to extend this work to larger gesture sets, in a 
more ecologically-valid scenario. This study made several 
simplifying assumptions, especially with respect to the 
small number of gestures. While it is not anticipated that 
there will be a large difference in the effect of guidance 
when using more gestures, it is of interest to ensure that the 
results found in this study do generalize. We have been 
unifying and standardizing evaluation methods for both the 
usability and learnability (both the cognitive and motor 
components) of a gesture system. Until there are clear 
guidelines for assessing gestural interfaces, manufacturers 
of commercial systems as well as researchers will continue 
to develop various ad-hoc methods to assess their systems, 
making it difficult to compare results across systems and 
studies. 
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