

Ivy: Exploring Spatially Situated Visual Programming for Authoring and
Understanding Intelligent Environments

Barrett
Ens†

Fraser
Anderson‡

Tovi
Grossman‡

Michelle
Annett‡

Pourang
Irani†

George
Fitzmaurice‡

Autodesk Research,
University of Manitoba

Autodesk
Research

Autodesk
Research

Autodesk
Research

University of
Manitoba

Autodesk
Research

ABSTRACT

The availability of embedded, digital systems has led to a multitude
of interconnected sensors and actuators being distributed among
smart objects and built environments. Programming and
understanding the behaviors of such systems can be challenging
given their inherent spatial nature. To explore how spatial and
contextual information can facilitate the authoring of intelligent
environments, we introduce Ivy, a spatially situated visual
programming tool using immersive virtual reality. Ivy allows users
to link smart objects, insert logic constructs, and visualize real-time
data flows between real-world sensors and actuators. Initial
feedback sessions show that participants of varying skill levels can
successfully author and debug programs in example scenarios.

Keywords
Virtual reality; mixed reality; visual programming language; spatial
interaction; internet of things; immersive analytics.

Index Terms
H.5.2. Information interfaces and presentation: User interfaces

1 INTRODUCTION
Ubiquitous Computing scenarios [67] have led to an increased
number of objects that contain embedded circuitry and logic. This
manifestation, known colloquially as the Internet of Things (IoT),
is expected to grow exponentially to over 20 billion connected
objects by 2020 [22]. Taking full advantage of this network of
sensors, actuators and smart objects will require sophisticated tools
that allow users to control the flow of data and understand logical
connections between numerous spatially situated devices.

To enable end-users with limited programming skills to author
and visualize embedded control logic, 2D visual environments such
as Wyliodrin [70] and Node-RED [6] have been introduced. These
graphical tools can help users understand logical connections
between objects, but do not inherently reveal spatial relationships
with other objects or their physical surroundings. However, end-
users, including both professionals and amateurs, may benefit from
spatial knowledge of connected objects in smart environments. For
example, a technician touring a ‘smart’ building may be able to
identify the source of anomalous sensor readings more easily by
inspecting the immediate surroundings for air leaks, water damage
or other signs of problems. Likewise, spatial information may help

a hobbyist identify a specific motor among several distributed
objects with less effort than by using abstract identifiers alone.

The Reality Editor [30–32] has recently provided a starting point
for spatially situated visual programming, with an implementation
that allows authoring of basic connections between smart objects
using augmented reality (AR) on handheld devices. We build on
these efforts by exploring how such experiences can be improved
with an immersive, wearable platform. Wearable mixed reality
displays eliminate the mobile screen’s barrier, and free the user’s
hands to interact directly with the surrounding world. While this
opens intriguing opportunities for wearable AR platforms, we
instead employ a room-scale virtual reality (VR) platform, which
provides a wide field of view (FoV) and bimanual controllers,
allowing us to focus our efforts on spatial UI design. Further, VR
provides opportunities to explore use-cases beyond the user’s
immediate situation and physical laws, such as working in remote
locations, or scaling time and space.

Figure 1: Ivy is an immersive visual programming tool for authoring
IoT programs and visualizing sensor data. Users can (a) create
program constructs, (b) establish logical links, (c) visualize data flows
from real-world sensor data, and (d) upload data to the cloud. Virtual
port nodes (c) act as interfaces to real-world sensors, such as foot-
traffic readings in this museum scenario.

The main contribution of this paper is Ivy (Figure 1), a spatially
situated visual programming environment for authoring logical
connections and understanding dataflow between smart objects.
Guided by a set of design guidelines for situated programming
drawn from prior work on spatial interaction, this immersive VR
application explores several areas, such as data flow visualization,
debugging tools, and real-time deployment. Users of Ivy can create
functioning programs with live sensor data from real objects in the
external environment. To gain feedback on the utility of such a
system, we invited several participants with varying levels of IoT,
VR, and programming expertise to try Ivy. Their performance and
positive feedback show potential for such immersive tools, as well
as future avenues for AR adaptations.

†{bens, irani}@cs.umanitoba.ca
‡{first.last}@autodesk.com

2 Related Work
Ivy builds on prior work in visual programming languages, 3D
authoring tools, and tools for visualizing and authoring IoT systems.

2.1 Visual Programming Environments
Visual programming languages such as Scratch [50] and Alice [10]
provide visual and spatial depictions to make programming more
approachable for children or non-experts. Similar approaches have
been taken to author IoT control logic, as in Node-RED [6],
WoTKit [5] and Wyliodrin [70]. While studies on their cognitive
benefits are inconclusive [7,69], visual representations have
persisted in numerous professional tools, such as LabView [37],
SimuLink [57], Max [42], and Grasshopper for Rhino [25].

2.2 3D and Immersive Authoring Tools
Immersive authoring tools allow users to create content within the
3D virtual environments they are designing. For example, CHIMP
[44] and CaveCAD [53] enable users to position and transform 3D
objects directly in a scene, while Holosketch [11], TiltBrush [62]
and CavePainting [35] provide immersive environments for free-
form, 3D sketching. Guven et al. [28] explored handheld AR
techniques for authoring multimedia in situ.

A few research projects have explored 3D visual programming
with abstract structures [29,47,49,59], however, virtual tools have
been more widely applied in situations that encompass clear
benefits of 3D space. For example, tools have been incorporated
into virtual environments to allow authoring of scene objects and
behaviours [38,52,58] while immersed within, allowing users to
more readily understand the behaviour of their scene and the
element. Commercial tools that combine visual programming with
3D scenes include Dynamo for Revit [16], Blueprints visual
scripting for the Unreal Engine [21] and as a Maya plugin [46],
Flow for Autodesk’s Stingray [60], Virtools [1], and Doom
SnapMap [14].

Like these latter examples, Ivy promotes understanding using
spatial relationships between logic constructs and their related
objects, but in a differing context of control logic for IoT.

2.3 IoT Visualization Tools
A variety of projects have explored the visualization of IoT-
generated data. Dashboards [23,54] are commonly applied in
desktop environments for monitoring IoT deployments, but do not
typically provide access to control logic. Other projects present
sensor data visualizations in the context of their spatial environment
[17], [36,55], however these tools largely focus on the analysis and
aggregation of data that is superimposed on a static scene model.

Handheld AR has been used for in situ visualization of
connections between objects [43,63] or sensor data
[18,27,34,64,68]. In contrast, Ivy visualizes not only data values,
but also reveals the flow of data between program constructs and
situated objects to assist the comprehension of IoT program
structures.

2.4 IoT Authoring Tools
Numerous authoring tools have been developed to ease the burden
of creating networks of sensors or IoT-connected devices, for
instance, applications for developing context-aware systems
[12,39,51] and for programming by demonstration [13]. Visual
programming approaches such as Jigsaw [33] have been developed
for IoT applications, however, immersive authoring has been little
explored for such applications.

The primary inspirational groundwork for Ivy is the Reality
Editor [30,31], a handheld AR interface that allows users to link
objects that are within view of a smartphone camera. Expansions of
this work include AR-based UIs for smart objects [32], and back-
end connections to physical artifacts [45]. We build on this work
with an immersive implementation that provides more advanced
programming and debugging features, and eliminates the need to
hold a device. Ivy’s multi-tool palette supports bimanual, spatial
interaction to provide direct control of logic constructs, allowing
larger and more complex programs to be authored.

3 Advantages of Mixed Reality for Spatial Tasks
A variety of mixed reality platforms have recently become
sophisticated enough to support situated programming. Three
general categories of platforms are handheld augmented reality
(HAR), head-mounted augmented reality (AR), and virtual reality
(VR) (Table 1).

Handheld augmented reality overlays virtual objects on the
camera feed of a mobile phone or tablet. Such systems are portable
but have inherent limitations; for example, presenting a wide FoV
results in visible distortion, while interactions are constrained to the
display space of the held device. The Reality Editor [30,31], the
only mixed reality system for situated programming in smart
environments to date, uses handheld augmented reality.

Head-mounted augmented reality superimposes virtual content
directly over physical surroundings. The available rendering FoV
varies with hardware, but could potentially be wider than HAR; see-
through displays provide a wide view of the real-world scene
without distortion. A key advantage of head-mounted AR is that
users can interact normally with physical objects. The ability to
interact with the real world while also manipulating virtual artifacts
makes AR potentially useful for spatially situated programming.

Virtual reality systems immerse users in simulated environments.
Although users are disconnected from the real world, virtual
environments can provide certain advantages. Whereas the
advantages of AR are based in the ability to situate users in relevant
spaces, the advantages of VR lie in its purely virtual worlds; VR
can provide access to remote locations, dangerous environments, or
buildings not yet constructed. IoT technicians can assist architects
at design time, using simulated sensors to configure smart
environment behaviours. VR also supports the manipulation of
space and time, such as changes in scale, teleportation, or other
interactions not available in physically situated AR systems [8].

Based on these properties, it is promising to explore mixed-
reality authoring within a head-mounted configuration, as it can
provide a greater level of immersion than HAR, and frees the user’s
arms for intuitive, bimanual interaction. While there are many
potential benefits of a situated, wearable AR system, we focus our
current exploration on a room-scale VR platform, which provides
several advantages, including a precise global tracking system and
a wider FoV than currently available AR platforms.

 HAR [31] AR VR

Immersive Visualization Limited FOV Yes Yes

In Situ Use Yes Yes Occluded

Remote Use No No Yes

Bimanual Interaction No Yes Yes

Physical Access Yes Yes Occluded

Space/Time Manipulation No No Yes
Table 1: Advantages of mixed reality platform categories.

4 Spatially situated Visual Programming
Next, we explore a spatially situated programming environment that
supports the authoring and editing of programs by manipulating 3D
logic constructs in a relevant (in situ or virtual) spatial context. We
propose that spatially situated programming will be well suited to
high-level programming tasks where spatial context is important,
for instance authoring connections in a smart home, or debugging
linkages in a complex network of sensors and actuators. End-users
engaging in such tasks will benefit from their inherent spatial
knowledge of object layouts and from the advantages of spatial
interaction methods. Conversely, as is unlikely that spatially
situated programming will support low-level or abstract program
components, it will likely complement, rather than replace, current
desktop programming methods.

4.1 Design Guidelines
Drawing from the literature on spatial interaction, mixed reality,
and interface design, we devised the following four guidelines for
developing a spatially situated visual programming environment.
These guidelines emphasize the spatial nature of situated constructs.

D1. Maintain spatial relationships: A key advantage of situated
programming is that relationships between objects and logic
constructs can be clearly depicted. Spatial association has been used
to allow users to organize computer artifacts [65] or recall
commands [40]. Similarly, spatial coupling between objects and
abstractions will help users associate smart objects with related
logic constructs to assist in the tracing and debugging of complex
systems of sensors and actuators.

D2. Facilitate spatial interaction: Spatial interaction methods
have been shown to possess clear advantages over abstract
interaction methods in many contexts [2,19,40,41]. For instance,
spatial locations can be referenced intuitively, using head or body
motion, and efficient bimanual interaction techniques that mimic
familiar physical manipulations can be applied.

D3. Embrace physical properties: Just as existing visual
environments use properties such as colour and shape to distinguish
programming elements [48,50,70], immersive environments
provide additional opportunities for symbolic representations,
wherein logic constructs can be given a seemingly physical form.
Scale, shape, and rendering style can all be used to communicate a
construct’s function and properties. Top-to-bottom execution of
logic constructs can leverage the downward direction of gravity to
denote the flow of logic. As users are free to move around the
constructs in 3D spatial environments, the traditional left-to-right
logic flow breaks down, whereas top-to-bottom remains constant.

D4. Expose minimally sufficient information: Because end-users
of situated visual programming environments may be non-expert
programmers who are preoccupied by their surroundings, tools
should be lightweight, modular, and easy to use. Also, because the
program is situated within an external environment, care should be
taken to avoid visual clutter [4,24]. Only necessary details about the
program surface layer need be presented, with details about specific
parameters and the underlying implementation kept at a minimum
and presented only as required.

5 Ivy
With the above design guidelines in mind, we created a system to
explore spatially situated visual programming on a room-scale VR
platform. Ivy allows end-users to visualize, author, and edit the
behaviors of physical IoT sensors and actuators. Ivy uses a dataflow
programming model and is inspired by visual and functional aspects
of Scratch [50] and Max [42].

5.1 Conceptual Model
Smart objects are intertwined with our daily environments, but their
interlinking connections and governing logic remains hidden. To
visualize these abstract concepts, logic constructs are presented as
virtual nodes and links. Nodes represent interfaces to smart objects,
logical operators, and program functions. Links represent the paths
of data and program flows between constructs. Each intelligent
object has a virtual port, providing access to sensors or actuators.

Programming occurs in an immersive environment, which allows
spatial interaction with situated objects. Despite authoring being
virtual, the program is connected to real, physical objects. Input is
driven by sensors in the environment, program behaviours control
real-world actuators, and output is directed to cloud servers. When
a program is run, data can be observed flowing through the
constructs, to facilitate understanding of the program logic.

5.2 Implementation Platform
Ivy is implemented using an HTC Vive, which provides room-scale
VR. Our implementation runs in Unity 3D, on a PC with an Intel
Xeon processor and GeForce GTX 970 graphics card. Program
constructs are fully functional and can be connected to simulated or
real-world sensors and actuators, as well as a real-time cloud-based
data logging service (Figure 2). Ivy drives physical object behaviors
with actuation commands sent through a REST API.

Figure 2: Ivy system overview.

5.3 Program Constructs
Ivy uses shape and colour variations to differentiate between
categories of functionality (D3). Users have access to a variety of
pre-set functions, with minimal GUI-based controls for adjusting
parameters (D4). While a robust system would require a large
library of pre-set functions, Ivy’s initial subset allows sufficient
functionality to demonstrate and evaluate key concepts.

5.3.1 Logic Nodes
Ivy’s programming functions are organized within six types of logic
nodes (Figure 3). For visual consistency, program flow executes
from each node’s top input to its bottom output connector (D3).

Figure 3: Programming constructs in Ivy are represented nodes.
Each category is given a distinct shape and colour.

Ports are virtual representations of sensors and object behaviors
and provide access to underlying data. Ports are fixed to the virtual
representations of their associated physical objects (D1). To reduce
visual clutter, multiple behaviors are grouped in a single Port (D4).

Trigger nodes invoke actions given a specific set of conditions.
These are conceptually similar to ‘if-then’ constructs of imperative
languages, and are a fundamental tool within many IoT
programming languages [9,48].

Aggregator nodes contain common functions that aggregate
multiple input values into a single value, such as a mean or sum.
Ivy’s aggregator functions also include the n-ary logical operators
AND and OR.

Filter nodes represent standard functions for smoothing sensor
data such as low-pass filtering.

Converter nodes convert data between types or ranges of values.
For example, the ‘invert’ function flips high output values to low,
and vice versa.

Cloud nodes represent channels to external servers, allowing
users to log data output from an Ivy program for later inspection or
to retrieve data from an external source.

5.3.2 Connector Links

Ivy represents connections between nodes using curved links that
connect the output connector of one node to the input connector of
the next node of a logic chain (D3). To help identify connected
nodes, the end of the link matches the colour of the node at the
opposite end of the link. Ivy does not restrict connections between
nodes, but relies on the user to create the desired configurations. Ivy
allows multiple links to ‘fan in’ to or ‘fan out’ of a single connector.

5.4 Interaction
Users of Ivy can author program constructs by creating new logic
nodes and specifying links. Users can also inspect and edit existing
program structures and observe data flow in real time (D1) to
identify potential problems and debug programs. Below we
describe what such interaction entails.

5.4.1 Interaction and Navigation
Ivy’s functionality is accessed using a bimanual tool palette and
wand (Figure 4). The tools are held in the left-hand palette and
selected via the right-hand wand. For object manipulation, Ivy uses
a combination of proximity and raycasting [66]. Nearby items can
be selected using the wand’s trigger button (D1), whereas distant
items can be selected with the wand’s laser. When needed, the
navigator tool allows for teleportation within a large virtual space.

Figure 4: Ivy’s Wand and Palette menu system.

5.4.2 Authoring Program Constructs

Users can author new programs within Ivy by creating node and
link constructs in the virtual environment. Port nodes are spatially
fixed to their related objects in advance (D1) and are initialized with
corresponding sensor and actuator types. Ports and Cloud nodes act

as inputs and outputs to the system, respectively, and may be linked
to any number of other nodes. Once placed, nodes remain fixed at
their drop point, except for Clouds, which rise to a height of 4
meters to indicate they are external to the current environment (D3).

5.4.3 Authoring Links

The linker tool is used to author node connections. While linking,
an anchor line from the linker tool to the start node signals that a
link is in progress. If a user changes tools during linking, the anchor
connection remains intact. The persistence of the anchor allows
intermediary operations, for instance, selecting a start node before
navigating to a prospective end node. When a new link is initiated,
existing links shrink to reduce occlusion of the scene (D4). Nodes
can be un-linked with the cutter tool.

When linking to or from a Port node, users must select a source
or sink. Sources are an object’s sensors or other internal parameters
(e.g. temperature), while sinks are actuated behaviors or object
functions (e.g. enter/exit sleep mode). When a Port is selected, the
available sources and sinks are presented by a set of medallions,
distributed in an arc above the Port (Figure 5a). Every other node
type has a custom GUI that appears when linked to. These GUIs
provide access to pre-set functions and parameters (Figure 5b; D4)
and can be re-summoned with the programmer tool.

Figure 5: a) Medallions are shown when a port is selected. b) All other
node types have an associated GUI.

5.4.4 Link Autocomplete
To expedite the node linking process, we implemented an
autocomplete feature inspired by OctoPocus [3]. After a start node
is selected, Ivy reveals the paths of all possible links to existing
nodes (Figure 6). Pulsating transparent lines differentiate possible
links from existing ones. The angle between the wand laser’s
current direction and a given node are mapped to link transparency
(D2). To eliminate the need for precise targeting, the nearest link
within a threshold angle of 30° can be selected.

Figure 6: The autocomplete feature displays possible links.

5.5 Program Inspection and Data Flow Visualization
The inspector tool provides features to help users understand a
program’s control structure and purpose. By investigating program
constructs, users can identify and debug potential problems.

5.5.1 Program Execution

Ivy uses a stack-based synchronous execution model [42],
employing a single link type for all data. This reduces complexities,
such as the unpredictable arrival sequence of various parameters or
the need for multiple identical links with different types. Program
data is passed along links in generic packages, each containing a list
of values with mixed type. Ivy currently supports Float, Vector3,
and Boolean, however the data flow model is extensible. If multiple
links connect to a node, all incoming packages are merged.

When the program structure is updated, Ivy places all linked
nodes into a stack. The stack creation algorithm ensures that each
node precedes all other nodes found in its outbound tree of links.
One problem facing data flow programming environments is how
to specify the order of execution of parallel link chains. For
instance, if two nodes emerge from a parent node, the order of
execution could have consequences for nodes further along the
chain. The current implementation places nodes in the execution
stack following the creation order of their connecting links.

5.5.2 Data Flow Visualization

Ivy includes a feature for visualizing data flow between constructs.
Data flow can be started, paused, or stopped at any time using the
inspector tool. When the program is running, active data packets are
represented by particle clouds that flow along each link (Figure 7;
D1). The particles encode several properties of the data:

Source – Colour represents the data’s original source sensor type,
which allows users to trace each source’s path through the program
structure. Particle colours match the corresponding sensor types
shown on the medallions (Figure 5a, D3).

Value – Data values are represented by particle size, with larger
particles indicating greater values (D3). Values are scaled linearly
based on a low- and high-value pair for each source sensor type.

Frequency – The update frequency of the system is shown by the
volume of particles flowing through each link. Each time a function
is executed, a burst of particles traverses the link over a duration of
1 second. If a function fails to produce a valid output, no particles
are emitted, visibly indicating that there are errors (D1). Ivy
currently processes all nodes in the stack at a frequency of 10 Hz.

5.5.3 Debugging Tools

Debugging tool suites are commonplace in many programming
environments. In addition to starting and stopping the program and

Figure 7: Data flow is visualized with particles of varying colour and
size to depict the data source and changing values.

data flow visualization, Ivy’s inspector tool allows users to freeze
the data flow visualization in its current state. The step feature
provides control over program execution, allowing users to step
through program cycles at their own pace. Each press of the wand
trigger passes execution to the next node in the stack, with the data
flow following each step. The sequence feature is similar to the step
feature, but delays the flow visualization at each step to make it
easier for users to follow data flow along the logic chain. Lastly, the
in/out links feature assists in the identification of linked nodes by
highlighting inbound, outbound, or all connected links (Figure 8).

Figure 8: The selected blue node is highlighted with rotating rings,
with visual emphasis on its connected links and nodes.

5.6 Real-world Sensing and Actuation
Ivy programs can connect to external environmental sensors and
actuators. Sensor input originates from Texas Instrument
SensorTags [56]. Each unit contains a 9-axis IMU, and sensors for
ambient temperature, pressure and relative humidity. Data is routed
through an online data broker, Dweet.io [15], and is polled once per
second to retrieve updates.

If the user-defined program results in real-world objects
changing states (e.g., lights turning on or off), a web-based REST-
API reacts to state changes by controlling a USB-connected Phidget
relay board [26] and logs the outgoing data to a web server.

6 Initial feedback sessions
To identify current limitations and opportunities for further
exploration, we invited eight professionals (1 female, aged 29-45;
Table 2) with expertise in IoT, Information Visualization, and
Computer Graphics to explore Ivy’s visual programming features.
Participants had a range of programming experience, from novice
to expert, and represented a wide spectrum of potential end-users.
Aside from one first-time user, all had minimal to moderate
experience with VR. Sessions lasted 45 to 60 minutes.

 Area of Expertise Job Experience
(years)

IoT
Knowledge

P1 Building Information Modelling 5 4
P2 Program Manager 2 4
P3 Internet of Things 18 5
P4 Interactive Data Visualization 8 3
P5 Information Visualization 6 3
P6 Software Development 18 4
P7 Computer Graphics 12 3
P8 Building Information Modelling 6 3

Table 2: Participant backgrounds, experience. IoT knowledge was
self-reported from 1 to 5 (Not at all to extremely knowledgeable).

6.1 Protocol
Participants underwent a brief training session to demonstrate Ivy’s
user interface and feature set and then were guided through a series
of example programs.

Overview and Training (20-30 minutes) - Training took place in
a virtual office environment and began with an introduction to the
controllers and bimanual tool palette. Next, Ivy’s basic node
creation and link authoring features were demonstrated by guiding
participants through the steps to create two simple programs, with
live connections to real-world sensors and actuators.

Test Environments (15-20 minutes) - Users were then shown two
example environments (described below) to demonstrate realistic
application scenarios. After demonstrating the data flow
visualization and debugging features, participants inspected
programs to determine their basic purpose and were asked to locate
and correct a small bug planted in one of the programs.

Feedback - A questionnaire collected information about each
participant’s profession and experience with IoT. Participants also
answered Likert-based questions (scale 1-5) on the usefulness and
various aspects of Ivy.

6.2 Example Application Scenarios
The first test environment was an industrial fabrication workshop.
Accelerometer and gyro sensor readings from two machines were
fed to triggers that monitored for high values. The trigger outputs
were aggregated into a Boolean OR function, linked through an
‘invert’ function to the workshop’s power supply port (Figure 9).
This configuration triggered a power cut when excessive vibrations
were detected to help reduce damage if a machine malfunctioned.

The second environment was a museum space, in which several
foot traffic sensors were linked to a central aggregator node. The
mean value was forwarded to a trigger node that activated a large

Figure 9: Example of a workshop with program links to automatically
trigger a machine shut down.

Figure 10: Example of a museum with program links to trigger the
power to a central exhibit based on foot traffic.

exhibit when enough people were present (Figure 10). These
scenarios were used because VR could potentially help managers or
technicians monitor and program such remote, intelligent spaces.

6.3 Observations and Feedback
From our observations, participants could quickly learn Ivy’s
features. Once a particular feature was shown, participants could
select and operate the correct tool with little prompting, “With only
minimal instructions at the beginning I was able to carry on the
tasks without too much supervision” (P6).

Participants were generally receptive to Ivy and indicated cases
where such a tool would be useful in their profession. P1
summarized, “I can see this being very useful to gaining
understanding of systems built by others or when trying to debug…
A visual and physical interface for programming is much more
accessible than standard coding”. Participants also recognized the
utility of visual tools, in this context, for novice users: “I think it
would be very powerful as a fun, low-barrier entry point to visually
programming IoT devices and behaviours” (P4). Ivy’s visual
features helped most participants easily identify our planted ‘bug’,
which caused the visual data flow to cease at the affected node.

Survey responses were positive about the virtual logic constructs
(Q1; Figure 11) and features for visual debugging and data flow
(Q4). P3 commented that the “Visualization of data flow could help
users better understand the logic they are establishing”, with P7
adding “I believe stepping along a program, and visualizing it in
situ… would be very useful to debug very complex programs”.

Participants had mixed opinions about the utility of VR for IoT
authoring (Q5). Several identified specific benefits of VR, for
example to make buildings “accessible off-site (remotely) or prior
to construction” (P1). P3 found the spatial interface “intuitive” and
P4 noted “I think the immersive aspect really adds to the
experience. On a desktop, I think 3D navigation would encumber
the experience.” However, some felt authoring applications in VR
would be cumbersome: “I like the possibilities with VR but feel like
it is slower and less direct than the desktop experience would be”
(P2). Participants did, however, recognize the inherent trade-offs
between platforms, noting that immersive authoring could likely be
used in conjunction with traditional tools: “In my profession I'd
think that an interesting combination would be to have VR for
debugging and development phase and also for troubleshooting
remotely the actual system, while AR could be useful when
deploying the system in the real world ” (P4).

Several participants provided comments about additional
features they would like to see in a future version of Ivy, for
example to encapsulate groups of constructs within sub-structures.
Participants also said they would like to see a greater variety of
visual encodings of information in the links and data flow
visualization.

Figure 11: Participant responses to aspects of the Ivy system.

7 Discussion and Future Work
Our prototype development environment provides a proof-of-
concept interface for spatially situated visual programming that
leverages information about the spatial layouts of smart objects. Ivy
demonstrates how the proposed guidelines result in a useful,

functioning programming environment. Initial feedback suggests
that it is possible to create 3D programs with an immersive interface
that is easy to use and applicable to both novices and professionals.
Participants saw value in Ivy for practical IoT applications and
welcomed further integration with AR and desktop components.

Our study revealed several limitations of the current system and
areas of interest for future research. Participants quickly learned the
interface and had little trouble applying the available features in the
test scenes. However, we noticed limitations in the raycasting
mechanism when selecting at far distances. Although the auto-
complete feature was very effective for completing links, more
sophisticated selection techniques are likely required for dense
arrangements or large environments. Future solutions could
potentially leverage the specific advantages of virtual worlds to
scale and warp space. For instance links may be authored in a world
in miniature view [61] to reduce the required motion, or distant
sections of a room could be reconstructed nearby for direct access.

One issue raised by some participants was a need for further
directional indicators in the program structure. Although we
included elements such as top-to-bottom flow, animated directional
markers on selected links, and visible data flow, some participants
had trouble identifying the direction of a program before running or
inspecting it in detail. Further developments could include modified
construct shapes or more intuitive layouts.

We are eager to develop a more fully-featured system with an
elaborate range of functions and pre-sets and to explore these in
deployments with hundreds or thousands of objects. Questions
remain, however, about how to scale Ivy to more complex, real-
world situations. Some lessons can be borrowed from existing
systems; for instance, whereas Max [42] addresses function
scalability by relying primarily on text descriptors to differentiate
objects, Scratch [50], NodeRED [6], and Wyliodrin [70] show the
potential of organizing a large number of functions into a limited
number of colours and shapes. Participants also indicated the need
for features to encapsulate program structures into hierarchical
elements; for example, once a program subroutine has been
constructed, its visual representation can be replaced with a single
element, such as a box, which can later be opened for editing. Such
encapsulation features are commonplace in data flow languages
such as Max, and help to create maintainable program structures.

Participants were generally very receptive to the spatial aspects
of virtual logic constructs and visual data flow, but some were
hesitant about the utility of a VR system. We attribute this in part
to some participants’ strong familiarity with desktop programming
environments through their work (e.g. P6 with 18 years of desktop
development experience). Conversely, other participants
appreciated the potential of VR; for instance, P5, with a background
in information visualization, commented that he was sceptical at
first about the VR interface, but after using Ivy, saw strong potential
in the visual and spatial nature of Ivy.

To follow up on this initial feedback, formal studies are needed
to identify the specific benefits of a spatial interface for situated
programming. These benefits may be more readily realized through
the spatially situated advantages of an AR platform, which our VR
system did not allow us to fully explore. We would also like to
investigate the benefits of a collaborative, mixed-platform system
that integrates Ivy with desktop tools for back-end development,
along with new interaction methods to increase end-user control
over function arguments and parameters. Such future research
should also include the invention of new lightweight and portable
control devices to provide portability for mobile workers using AR.
Furthermore, while many of Ivy’s current features may be adapted
for an AR system, future work must investigate how to minimize

visual clutter and prevent interference during complex real-world
tasks [20].

In future work, it will also be interesting to explore the presented
concepts in other domains, such as programming behaviours for
immersive games, virtual architectural walkthroughs, or 3D
storytelling applications.

8 Conclusion
This work introduced Ivy, a spatially situated visual programming
environment that enables users to author IoT behaviours in a VR
environment. An initial study on the benefits of an immersive VR
platform and semantic object references demonstrated the merits of
a spatial interface for such systems. More broadly, the work
contributes a set of design guidelines for immersive visual
programming and moves toward sophisticated spatial interface
tools for authoring and understanding complex situated programs in
mixed reality systems. These explorations highlight several
potential benefits and limitations of such systems and allude to
promising areas for future research.

REFERENCES

[1] 3DVIA Virtools. [Online]. Available:
http://www.3dvia.com/products/3dvia-virtools/. [Accessed: 11-Apr-
2016].

[2] R. Ball and C. North. The effects of peripheral vision and physical
navigation on large scale visualization, in Proc. GI, pp. 9-16, 2008.

[3] O. Bau and W. E. Mackay. OctoPocus: a dynamic guide for learning
gesture-based command sets, in Proc. UIST, pp. 37-46, 2008.

[4] B. Bell, S. Feiner, and T. Höllerer. View management for virtual
and augmented reality, in Proc. UIST, pp. 101-110, 2001.

[5] M. Blackstock and R. Lea. IoT mashups with the WoTKit, in Proc.
IoT, pp. 159-166, 2012.

[6] M. Blackstock and R. Lea. Toward a distributed data flow platform
for the web of things (distributed node-RED), in Proc. WoT, pp. 34-
39, 2014.

[7] A. F. Blackwell, K. N. Whitley, J. Good, and M. Petre. Cognitive
factors in programming with diagrams, Artif. Intell. Rev., 15(1–2):
95–114, 2001.

[8] D. A. Bowman, R. P. McMahan, and E. D. Ragan. Questioning
naturalism in 3D user interfaces, Commun. ACM, 55(9): 78–88,
2012.

[9] Connect the apps you love - IFTTT. [Online]. Available:
https://ifttt.com/. [Accessed: 16-Sep-2015].

[10] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-D tool for
introductory programming concepts, in Journal of Computing
Sciences in Colleges, 15: 107-116, 2000.

[11] M. F. Deering. The HoloSketch VR sketching system, Commun.
ACM, 39(5): 54–61, 1996.

[12] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications, Hum-Comput Interact, 16(2): 97-166, Dec. 2001.

[13] A. K. Dey, T. Sohn, S. Streng, and J. Kodama. iCAP: Interactive
prototyping of context-aware applications, in Pervasive Computing,
K. P. Fishkin, B. Schiele, P. Nixon, and A. Quigley, Eds. Springer,
pp. 254-271, 2006.

[14] DOOM SnapMap. [Online]. Available: http://doom.com/en-
us/snapmap. [Accessed: 18-Sep-2016].

[15] dweet.io - Share your thing like it ain’t no thang. [Online].
Available: http://dweet.io/. [Accessed: 11-Apr-2016].

[16] Dynamo BIM. [Online]. Available: http:// http://dynamobim.org/
[Acessed: 18-Sep-2016].

[17] EBSCOhost | Sensor-enabled Cubicles for Occupant-centric Capture
of Building Performance Data. [Online]. Available:
http://connection.ebscohost.com/c/articles/67217601/sensor-
enabled-cubicles-occupant-centric-capture-building-performance-
data. [Accessed: 11-Apr-2016].

[18] N. ElSayed, B. Thomas, K. Marriott, J. Piantadosi, and R. Smith.
Situated Analytics, in Proc. BDVA, pp. 1-8, 2015.

[19] B. Ens, R. Finnegan, and P. P. Irani. The Personal Cockpit: A
spatial interface for effective task switching on head-worn displays,
in Proc. CHI, pp. 3171-3180, 2014.

[20] B. Ens, E. Ofek, N. Bruce, and P. Irani. Spatial constancy of
surface-embedded layouts across multiple environments, in Proc.
SUI, pp. 65-68, 2015.

[21] Game Engine Technology by Unreal. [Online]. Available:
https://www.unrealengine.com/. [Accessed: 11-Apr-2016].

[22] Gartner Says 6.4 Billion Connected. [Online]. Available:
http://www.gartner.com/newsroom/id/3165317. [Accessed: 11-Apr-
2016].

[23] M. Glueck, A. Khan, and D. J. Wigdor. Dive in!: Enabling
progressive loading for real-time navigation of data visualizations,
in Proc. CHI, pp. 561-570, 2014.

[24] R. Grasset, T. Langlotz, D. Kalkofen, M. Tatzgern, and D.
Schmalstieg. Image-driven view management for augmented reality
browsers, in Proc. ISMAR, pp. 177-186, 2012.

[25] Grasshopper. [Online]. Available: http://www.grasshopper3d.com/.
[Accessed: 11-Apr-2016].

[26] S. Greenberg and C. Fitchett. Phidgets: easy development of
physical interfaces through physical widgets, in Proc. UIST, pp.
209-218, 2001.

[27] A. Gunnarsson, M. Rauhala, A. Henrysson, and A. Ynnerman.
Visualization of sensor data using mobile phone augmented reality,
in Proc. ISMAR, pp. 233-234, 2006.

[28] S. Guven, S. Feiner, and O. Oda. Mobile augmented reality
interaction techniques for authoring situated media on-site, in Proc.
ISMAR, pp. 235-236, 2006.

[29] R. A. Herrera-Acuña, V. Argyriou, and S. A. Velastin. Toward a 3D
hand gesture multi-threaded programming environment, in Adv. in
Vis. Inf., Springer, pp. 1-12, 2013.

[30] V. Heun. Reality Editor on the App Store. [Online]. Available:
https://itunes.apple.com/au/app/reality-editor/id997820179?mt=8.
[Accessed: 21-Dec-2016].

[31] V. Heun, J. Hobin, and P. Maes. Reality Editor: Programming
smarter objects, in Ubicomp Adjunct Proc., pp. 307-310, 2013.

[32] V. Heun, S. Kasahara, and P. Maes. Smarter Objects: Using AR
technology to program physical objects and their interactions, in
Proc. CHI, pp. 2939-2942, 2013.

[33] J. Humble et al. “Playing with the Bits” User-configuration of
ubiquitous domestic environments, in Proc. UbiComp, pp. 256-263,
2003.

[34] F. Kawsar, E. Rukzio, and G. Kortuem. An explorative comparison
of magic lens and personal projection for interacting with smart
objects, in Proc. MobileHCI, p. 157-160, 2010.

[35] D. F. Keefe, D. A. Feliz, T. Moscovich, D. H. Laidlaw, and J. J.
LaViola Jr. CavePainting: A fully immersive 3D artistic medium
and interactive experience, in Proc. I3D, pp. 85-93, 2001.

[36] A. Khan and K. Hornbæk. Big data from the built environment, in
Proc. 2nd International Workshop on Research in the Large, pp. 29-
32, 2011.

[37] LabVIEW System Design Software. [Online]. Available:
http://www.ni.com/labview/. [Accessed: 16-Sep-2015].

[38] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim. Immersive
authoring of tangible augmented reality applications, in Proc.
ISMAR, pp. 172-181, 2004.

[39] J. Lee, L. Garduño, E. Walker, and W. Burleson. A tangible
programming tool for creation of context-aware applications, in
Proc. UbiComp, pp. 391-400, 2013.

[40] F. C. Y. Li, D. Dearman, and K. N. Truong. Virtual Shelves:
Interactions with orientation aware devices, in Proc. UIST, pp. 125-
128, 2009.

[41] C. Liu, O. Chapuis, M. Beaudouin-Lafon, E. Lecolinet, and W. E.
Mackay. Effects of display size and navigation type on a
classification task, Proc. CHI, pp. 4147-4156, 2014.

[42] Max is a visual programming language for media. [Online].
Available: https://cycling74.com/products/max/. [Accessed: 16-Sep-
2015]

[43] S. Mayer, Y. N. Hassan, and G. Sörös. A magic lens for revealing
device interactions in smart environments, in Proc. SIGGRAPH
Asia, pp. 1-6, 2014.

[44] M. Mine. Working in a virtual world: Interaction techniques used in
the chapel hill immersive modeling program, Tech. Report, Univ.
N. C., 1996.

[45] MIT Media Lab. Open Hybrid. [Online]. Available:
http://openhybrid.org/. [Accessed: 18-Sep-2016].

[46] mOculus.io | VR-Plugin for Autodesk Maya. [Online]. Available:
http://moculus.io/. [Accessed: 11-Apr-2016].

[47] M. A. Najork and S. M. Kaplan. The CUBE languages, in Proc.
1991 IEEE Workshop on Visual Languages, pp. 218–224, 1991.

[48] Node-RED. [Online]. Available: http://nodered.org/. [Accessed: 16-
Sep-2015].

[49] F. Reeth, K. Coninx, S. Backer, and E. Flerackers. Realizing 3D
visual programming environments within a virtual environment, in
Computer Graphics Forum, 14: 361–370, 1995.

[50] M. Resnick et al. Scratch: programming for all, Commun. ACM,
52(11): 60–67, 2009.

[51] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: aiding
the development of context-enabled applications, in Proc. CHI, pp.
434–441, 1999.

[52] C. Sandor, A. Olwal, B. Bell, and S. Feiner. Immersive mixed-
reality configuration of hybrid user interfaces, in Proc. ISMA, pp.
110–113, 2005.

[53] J. P. Schulze, C. E. Hughes, L. Zhang, E. Edelstein, and E.
Macagno. CaveCAD: a tool for architectural design in immersive
virtual environments, in Proc. SPIE, 2014, 9012.

[54] SeeControl. [Online]. Available: http://www.seecontrol.com/.
[Accessed: 11-Apr-2016].

[55] Z. Shi et al. Digital Campus Innovation Project: Integration of
Building Information Modelling with Building Performance
Simulation and Building Diagnostics, in Proc. SimAUD, pp. 51–58,
2015.

[56] Simplelink SensorTag. [Online]. Available:
http://www.ti.com/ww/en/wireless_connectivity/sensortag2015/.
[Accessed: 11-Apr-2016].

[57] Simulink - Simulation and Model-Based Design. [Online].
Available: http://www.mathworks.com/products/simulink/.
[Accessed: 11-Apr-2016].

[58] A. Steed and M. Slater. A dataflow representation for defining
behaviours within virtual environments, in Proc. IEEE VR, pp. 163–
167, 1996.

[59] R. Stiles and M. Pontecorvo. Lingua Graphica: a visual language for
virtual environments, in Proc. 1992 IEEE Workshop on Visual
Languages, pp. 225–227, 1992.

[60] Stingray Engine. [Online]. Available: http://stingrayengine.com/.
[Accessed: 19-Sep-2016].

[61] R. Stoakley, M. J. Conway, and R. Pausch. Virtual Reality on a
WIM: Interactive Worlds in Miniature, in Proc. CHI, pp. 265–272,
1995.

[62] Tilt Brush by Google. [Online]. Available:
http://www.tiltbrush.com/. [Accessed: 11-Apr-2016].

[62] J. Vermeulen, J. Slenders, K. Luyten, and K. Coninx. I bet you look
good on the wall: Making the invisible computer visible, in Proc.
AmI, pp. 196–205, 2009.

[63] J. A. Walsh and B. H. Thomas. Visualising environmental corrosion
in outdoor augmented reality, in Proc. AUIC, pp. 39–46, 2011.

[64] Q. Wang, T. Hsieh, and A. Paepcke. Piles across space: Breaking
the real-estate barrier on small-display devices, Int J Hum-Comput
Stud, 67(4): 349–365, Apr. 2009.

[65] C. Ware and D. R. Jessome. Using the bat: a six-dimensional mouse
for object placement, IEEE Comput. Graph. Appl., 8(6): 65–70,
Nov. 1988.

[66] M. Weiser. The computer for the 21st century, Sci. Am., 265(3): 94–
104, Sep. 1991.

[67] S. White and S. Feiner. SiteLens: Situated visualization techniques
for urban site visits, in Proc. CHI, pp. 1117–1120, 2009.

[68] K. N. Whitley and A. F. Blackwell. Visual programming: the
outlook from academia and industry, in Papers presented at the
seventh workshop on Empirical studies of programmers, pp. 180–
208, 1997.

[69] Wyliodrin. [Online]. Available: https://www.wyliodrin.com/.
[Accessed: 16-Sep-2015].

	ABSTRACT
	Keywords
	Index Terms
	1 INTRODUCTION
	2 Related Work
	2.1 Visual Programming Environments
	2.2 3D and Immersive Authoring Tools
	2.3 IoT Visualization Tools
	2.4 IoT Authoring Tools
	3 Advantages of Mixed Reality for Spatial Tasks
	4 Spatially situated Visual Programming
	4.1 Design Guidelines
	5 Ivy
	5.1 Conceptual Model
	5.2 Implementation Platform
	5.3 Program Constructs
	5.3.1 Logic Nodes
	5.3.2 Connector Links

	5.4 Interaction
	5.4.1 Interaction and Navigation
	5.4.2 Authoring Program Constructs
	5.4.3 Authoring Links
	5.4.4 Link Autocomplete

	5.5 Program Inspection and Data Flow Visualization
	5.5.1 Program Execution
	5.5.2 Data Flow Visualization
	5.5.3 Debugging Tools

	5.6 Real-world Sensing and Actuation
	6 Initial feedback sessions
	6.1 Protocol
	6.2 Example Application Scenarios
	6.3 Observations and Feedback
	7 Discussion and Future Work
	8 Conclusion

	REFERENCES

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles false

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.6

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType true

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 524288

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 0

 /ParseDSCComments false

 /ParseDSCCommentsForDocInfo false

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo false

 /PreserveFlatness true

 /PreserveHalftoneInfo true

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Remove

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ENU ()

 >>

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [612.000 792.000]

>> setpagedevice

