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ABSTRACT 

The availability of embedded, digital systems has led to a multitude 
of interconnected sensors and actuators being distributed among 
smart objects and built environments. Programming and 
understanding the behaviors of such systems can be challenging 
given their inherent spatial nature. To explore how spatial and 
contextual information can facilitate the authoring of intelligent 
environments, we introduce Ivy, a spatially situated visual 
programming tool using immersive virtual reality. Ivy allows users 
to link smart objects, insert logic constructs, and visualize real-time 
data flows between real-world sensors and actuators. Initial 
feedback sessions show that participants of varying skill levels can 
successfully author and debug programs in example scenarios. 

Keywords 
Virtual reality; mixed reality; visual programming language; spatial 
interaction; internet of things; immersive analytics. 

Index Terms 
H.5.2.  Information interfaces and presentation: User interfaces 

1 INTRODUCTION 
Ubiquitous Computing scenarios [67] have led to an increased 
number of objects that contain embedded circuitry and logic. This 
manifestation, known colloquially as the Internet of Things (IoT), 
is expected to grow exponentially to over 20 billion connected 
objects by 2020 [22]. Taking full advantage of this network of 
sensors, actuators and smart objects will require sophisticated tools 
that allow users to control the flow of data and understand logical 
connections between numerous spatially situated devices. 

To enable end-users with limited programming skills to author 
and visualize embedded control logic, 2D visual environments such 
as Wyliodrin [70] and Node-RED [6] have been introduced. These 
graphical tools can help users understand logical connections 
between objects, but do not inherently reveal spatial relationships 
with other objects or their physical surroundings. However, end-
users, including both professionals and amateurs, may benefit from 
spatial knowledge of connected objects in smart environments. For 
example, a technician touring a ‘smart’ building may be able to 
identify the source of anomalous sensor readings more easily by 
inspecting the immediate surroundings for air leaks, water damage 
or other signs of problems. Likewise, spatial information may help 

a hobbyist identify a specific motor among several distributed 
objects with less effort than by using abstract identifiers alone. 

The Reality Editor [30–32] has recently provided a starting point 
for spatially situated visual programming, with an implementation 
that allows authoring of basic connections between smart objects 
using augmented reality (AR) on handheld devices. We build on 
these efforts by exploring how such experiences can be improved 
with an immersive, wearable platform. Wearable mixed reality 
displays eliminate the mobile screen’s barrier, and free the user’s 
hands to interact directly with the surrounding world. While this 
opens intriguing opportunities for wearable AR platforms, we 
instead employ a room-scale virtual reality (VR) platform, which 
provides a wide field of view (FoV) and bimanual controllers, 
allowing us to focus our efforts on spatial UI design. Further, VR 
provides opportunities to explore use-cases beyond the user’s 
immediate situation and physical laws, such as working in remote 
locations, or scaling time and space. 

 
Figure 1: Ivy is an immersive visual programming tool for authoring 
IoT programs and visualizing sensor data. Users can (a) create 
program constructs, (b) establish logical links, (c) visualize data flows 
from real-world sensor data, and (d) upload data to the cloud. Virtual 
port nodes (c) act as interfaces to real-world sensors, such as foot-
traffic readings in this museum scenario. 

The main contribution of this paper is Ivy (Figure 1), a spatially 
situated visual programming environment for authoring logical 
connections and understanding dataflow between smart objects. 
Guided by a set of design guidelines for situated programming 
drawn from prior work on spatial interaction, this immersive VR 
application explores several areas, such as data flow visualization, 
debugging tools, and real-time deployment. Users of Ivy can create 
functioning programs with live sensor data from real objects in the 
external environment. To gain feedback on the utility of such a 
system, we invited several participants with varying levels of IoT, 
VR, and programming expertise to try Ivy. Their performance and 
positive feedback show potential for such immersive tools, as well 
as future avenues for AR adaptations. 
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2 Related Work 
Ivy builds on prior work in visual programming languages, 3D 
authoring tools, and tools for visualizing and authoring IoT systems. 

2.1 Visual Programming Environments 
Visual programming languages such as Scratch [50] and Alice [10] 
provide visual and spatial depictions to make programming more 
approachable for children or non-experts. Similar approaches have 
been taken to author IoT control logic, as in Node-RED [6], 
WoTKit [5] and Wyliodrin [70]. While studies on their cognitive 
benefits are inconclusive [7,69], visual representations have 
persisted in numerous professional tools, such as LabView [37], 
SimuLink [57], Max [42], and Grasshopper for Rhino [25]. 

2.2 3D and Immersive Authoring Tools 
Immersive authoring tools allow users to create content within the 
3D virtual environments they are designing. For example, CHIMP 
[44] and CaveCAD [53] enable users to position and transform 3D 
objects directly in a scene, while Holosketch [11], TiltBrush [62] 
and CavePainting [35] provide immersive environments for free-
form, 3D sketching. Guven et al. [28] explored handheld AR 
techniques for authoring multimedia in situ. 

A few research projects have explored 3D visual programming 
with abstract structures [29,47,49,59], however, virtual tools have 
been more widely applied in situations that encompass clear 
benefits of 3D space. For example, tools have been incorporated 
into virtual environments to allow authoring of scene objects and 
behaviours [38,52,58] while immersed within, allowing users to 
more readily understand the behaviour of their scene and the 
element. Commercial tools that combine visual programming with 
3D scenes include Dynamo for Revit [16], Blueprints visual 
scripting for the Unreal Engine [21] and as a Maya plugin [46], 
Flow for Autodesk’s Stingray [60], Virtools [1], and Doom 
SnapMap [14]. 

Like these latter examples, Ivy promotes understanding using 
spatial relationships between logic constructs and their related 
objects, but in a differing context of control logic for IoT.  

2.3 IoT Visualization Tools 
A variety of projects have explored the visualization of IoT-
generated data. Dashboards [23,54] are commonly applied in 
desktop environments for monitoring IoT deployments, but do not 
typically provide access to control logic. Other projects present 
sensor data visualizations in the context of their spatial environment 
[17], [36,55], however these tools largely focus on the analysis and 
aggregation of data that is superimposed on a static scene model. 

Handheld AR has been used for in situ visualization of 
connections between objects  [43,63] or sensor data 
[18,27,34,64,68]. In contrast, Ivy visualizes not only data values, 
but also reveals the flow of data between program constructs and 
situated objects to assist the comprehension of IoT program 
structures. 

2.4 IoT Authoring Tools 
Numerous authoring tools have been developed to ease the burden 
of creating networks of sensors or IoT-connected devices, for 
instance, applications for developing context-aware systems 
[12,39,51] and for programming by demonstration [13]. Visual 
programming approaches such as Jigsaw [33] have been developed 
for IoT applications, however, immersive authoring has been little 
explored for such applications.  

The primary inspirational groundwork for Ivy is the Reality 
Editor [30,31], a handheld AR interface that allows users to link 
objects that are within view of a smartphone camera. Expansions of 
this work include AR-based UIs for smart objects [32], and back-
end connections to physical artifacts [45].  We build on this work 
with an immersive implementation that provides more advanced 
programming and debugging features, and eliminates the need to 
hold a device.  Ivy’s multi-tool palette supports bimanual, spatial 
interaction to provide direct control of logic constructs, allowing 
larger and more complex programs to be authored. 

3 Advantages of Mixed Reality for Spatial Tasks 
A variety of mixed reality platforms have recently become 
sophisticated enough to support situated programming. Three 
general categories of platforms are handheld augmented reality 
(HAR), head-mounted augmented reality (AR), and virtual reality 
(VR) (Table 1). 

Handheld augmented reality overlays virtual objects on the 
camera feed of a mobile phone or tablet. Such systems are portable 
but have inherent limitations; for example, presenting a wide FoV 
results in visible distortion, while interactions are constrained to the 
display space of the held device. The Reality Editor [30,31], the 
only mixed reality system for situated programming in smart 
environments to date, uses handheld augmented reality. 

Head-mounted augmented reality superimposes virtual content 
directly over physical surroundings. The available rendering FoV 
varies with hardware, but could potentially be wider than HAR; see-
through displays provide a wide view of the real-world scene 
without distortion. A key advantage of head-mounted AR is that 
users can interact normally with physical objects. The ability to 
interact with the real world while also manipulating virtual artifacts 
makes AR potentially useful for spatially situated programming.  

Virtual reality systems immerse users in simulated environments. 
Although users are disconnected from the real world, virtual 
environments can provide certain advantages. Whereas the 
advantages of AR are based in the ability to situate users in relevant 
spaces, the advantages of VR lie in its purely virtual worlds; VR 
can provide access to remote locations, dangerous environments, or 
buildings not yet constructed. IoT technicians can assist architects 
at design time, using simulated sensors to configure smart 
environment behaviours. VR also supports the manipulation of 
space and time, such as changes in scale, teleportation, or other 
interactions not available in physically situated AR systems [8]. 

Based on these properties, it is promising to explore mixed-
reality authoring within a head-mounted configuration, as it can 
provide a greater level of immersion than HAR, and frees the user’s 
arms for intuitive, bimanual interaction. While there are many 
potential benefits of a situated, wearable AR system, we focus our 
current exploration on a room-scale VR platform, which provides 
several advantages, including a precise global tracking system and 
a wider FoV than currently available AR platforms. 

 HAR [31] AR VR 

Immersive Visualization Limited FOV Yes Yes 

In Situ Use Yes Yes Occluded 

Remote Use No No Yes 

Bimanual Interaction No Yes Yes 

Physical Access Yes Yes Occluded 

Space/Time Manipulation No No Yes 
Table 1: Advantages of mixed reality platform categories. 



 
 

4 Spatially situated Visual Programming  
Next, we explore a spatially situated programming environment that 
supports the authoring and editing of programs by manipulating 3D 
logic constructs in a relevant (in situ or virtual) spatial context. We 
propose that spatially situated programming will be well suited to 
high-level programming tasks where spatial context is important, 
for instance authoring connections in a smart home, or debugging 
linkages in a complex network of sensors and actuators. End-users 
engaging in such tasks will benefit from their inherent spatial 
knowledge of object layouts and from the advantages of spatial 
interaction methods. Conversely, as is unlikely that spatially 
situated programming will support low-level or abstract program 
components, it will likely complement, rather than replace, current 
desktop programming methods. 

4.1 Design Guidelines 
Drawing from the literature on spatial interaction, mixed reality, 
and interface design, we devised the following four guidelines for 
developing a spatially situated visual programming environment. 
These guidelines emphasize the spatial nature of situated constructs. 

D1. Maintain spatial relationships: A key advantage of situated 
programming is that relationships between objects and logic 
constructs can be clearly depicted. Spatial association has been used 
to allow users to organize computer artifacts [65] or recall 
commands [40]. Similarly, spatial coupling between objects and 
abstractions will help users associate smart objects with related 
logic constructs to assist in the tracing and debugging of complex 
systems of sensors and actuators. 

D2. Facilitate spatial interaction: Spatial interaction methods 
have been shown to possess clear advantages over abstract 
interaction methods in many contexts [2,19,40,41]. For instance, 
spatial locations can be referenced intuitively, using head or body 
motion, and efficient bimanual interaction techniques that mimic 
familiar physical manipulations can be applied.  

D3. Embrace physical properties: Just as existing visual 
environments use properties such as colour and shape to distinguish 
programming elements [48,50,70], immersive environments 
provide additional opportunities for symbolic representations, 
wherein logic constructs can be given a seemingly physical form. 
Scale, shape, and rendering style can all be used to communicate a 
construct’s function and properties. Top-to-bottom execution of 
logic constructs can leverage the downward direction of gravity to 
denote the flow of logic. As users are free to move around the 
constructs in 3D spatial environments, the traditional left-to-right 
logic flow breaks down, whereas top-to-bottom remains constant. 

D4. Expose minimally sufficient information: Because end-users 
of situated visual programming environments may be non-expert 
programmers who are preoccupied by their surroundings, tools 
should be lightweight, modular, and easy to use. Also, because the 
program is situated within an external environment, care should be 
taken to avoid visual clutter [4,24]. Only necessary details about the 
program surface layer need be presented, with details about specific 
parameters and the underlying implementation kept at a minimum 
and presented only as required. 

5 Ivy  
With the above design guidelines in mind, we created a system to 
explore spatially situated visual programming on a room-scale VR 
platform. Ivy allows end-users to visualize, author, and edit the 
behaviors of physical IoT sensors and actuators. Ivy uses a dataflow 
programming model and is inspired by visual and functional aspects 
of Scratch [50] and Max [42]. 

5.1 Conceptual Model 
Smart objects are intertwined with our daily environments, but their 
interlinking connections and governing logic remains hidden. To 
visualize these abstract concepts, logic constructs are presented as 
virtual nodes and links. Nodes represent interfaces to smart objects, 
logical operators, and program functions. Links represent the paths 
of data and program flows between constructs. Each intelligent 
object has a virtual port, providing access to sensors or actuators.  

Programming occurs in an immersive environment, which allows 
spatial interaction with situated objects. Despite authoring being 
virtual, the program is connected to real, physical objects. Input is 
driven by sensors in the environment, program behaviours control 
real-world actuators, and output is directed to cloud servers. When 
a program is run, data can be observed flowing through the 
constructs, to facilitate understanding of the program logic. 

5.2 Implementation Platform  
Ivy is implemented using an HTC Vive, which provides room-scale 
VR. Our implementation runs in Unity 3D, on a PC with an Intel 
Xeon processor and GeForce GTX 970 graphics card. Program 
constructs are fully functional and can be connected to simulated or 
real-world sensors and actuators, as well as a real-time cloud-based 
data logging service (Figure 2). Ivy drives physical object behaviors 
with actuation commands sent through a REST API. 

 
Figure 2: Ivy system overview. 

5.3 Program Constructs 
Ivy uses shape and colour variations to differentiate between 
categories of functionality (D3). Users have access to a variety of 
pre-set functions, with minimal GUI-based controls for adjusting 
parameters (D4). While a robust system would require a large 
library of pre-set functions, Ivy’s initial subset allows sufficient 
functionality to demonstrate and evaluate key concepts.  

5.3.1 Logic Nodes 
Ivy’s programming functions are organized within six types of logic 
nodes (Figure 3). For visual consistency, program flow executes 
from each node’s top input to its bottom output connector (D3).  

 
Figure 3: Programming constructs in Ivy are represented nodes. 
Each category is given a distinct shape and colour. 



 
 

Ports are virtual representations of sensors and object behaviors 
and provide access to underlying data. Ports are fixed to the virtual 
representations of their associated physical objects (D1). To reduce 
visual clutter, multiple behaviors are grouped in a single Port (D4). 

Trigger nodes invoke actions given a specific set of conditions. 
These are conceptually similar to ‘if-then’ constructs of imperative 
languages, and are a fundamental tool within many IoT 
programming languages [9,48]. 

Aggregator nodes contain common functions that aggregate 
multiple input values into a single value, such as a mean or sum. 
Ivy’s aggregator functions also include the n-ary logical operators 
AND and OR. 

Filter nodes represent standard functions for smoothing sensor 
data such as low-pass filtering. 

Converter nodes convert data between types or ranges of values. 
For example, the ‘invert’ function flips high output values to low, 
and vice versa. 

Cloud nodes represent channels to external servers, allowing 
users to log data output from an Ivy program for later inspection or 
to retrieve data from an external source. 

5.3.2 Connector Links 

Ivy represents connections between nodes using curved links that 
connect the output connector of one node to the input connector of 
the next node of a logic chain (D3). To help identify connected 
nodes, the end of the link matches the colour of the node at the 
opposite end of the link. Ivy does not restrict connections between 
nodes, but relies on the user to create the desired configurations. Ivy 
allows multiple links to ‘fan in’ to or ‘fan out’ of a single connector.  

5.4 Interaction 
Users of Ivy can author program constructs by creating new logic 
nodes and specifying links. Users can also inspect and edit existing 
program structures and observe data flow in real time (D1) to 
identify potential problems and debug programs. Below we 
describe what such interaction entails. 

5.4.1 Interaction and Navigation 
Ivy’s functionality is accessed using a bimanual tool palette and 
wand (Figure 4). The tools are held in the left-hand palette and 
selected via the right-hand wand. For object manipulation, Ivy uses 
a combination of proximity and raycasting [66]. Nearby items can 
be selected using the wand’s trigger button (D1), whereas distant 
items can be selected with the wand’s laser. When needed, the 
navigator tool allows for teleportation within a large virtual space. 

 
Figure 4: Ivy’s Wand and Palette menu system. 

5.4.2 Authoring Program Constructs 

Users can author new programs within Ivy by creating node and 
link constructs in the virtual environment. Port nodes are spatially 
fixed to their related objects in advance (D1) and are initialized with 
corresponding sensor and actuator types. Ports and Cloud nodes act 

as inputs and outputs to the system, respectively, and may be linked 
to any number of other nodes. Once placed, nodes remain fixed at 
their drop point, except for Clouds, which rise to a height of 4 
meters to indicate they are external to the current environment (D3). 

5.4.3 Authoring Links 

The linker tool is used to author node connections. While linking, 
an anchor line from the linker tool to the start node signals that a 
link is in progress. If a user changes tools during linking, the anchor 
connection remains intact. The persistence of the anchor allows 
intermediary operations, for instance, selecting a start node before 
navigating to a prospective end node. When a new link is initiated, 
existing links shrink to reduce occlusion of the scene (D4). Nodes 
can be un-linked with the cutter tool. 

When linking to or from a Port node, users must select a source 
or sink. Sources are an object’s sensors or other internal parameters 
(e.g. temperature), while sinks are actuated behaviors or object 
functions (e.g. enter/exit sleep mode). When a Port is selected, the 
available sources and sinks are presented by a set of medallions, 
distributed in an arc above the Port (Figure 5a). Every other node 
type has a custom GUI that appears when linked to. These GUIs 
provide access to pre-set functions and parameters (Figure 5b; D4) 
and can be re-summoned with the programmer tool. 

 
Figure 5: a) Medallions are shown when a port is selected. b) All other 
node types have an associated GUI.   

5.4.4 Link Autocomplete 
To expedite the node linking process, we implemented an 
autocomplete feature inspired by OctoPocus [3]. After a start node 
is selected, Ivy reveals the paths of all possible links to existing 
nodes (Figure 6). Pulsating transparent lines differentiate possible 
links from existing ones. The angle between the wand laser’s 
current direction and a given node are mapped to link transparency 
(D2). To eliminate the need for precise targeting, the nearest link 
within a threshold angle of 30° can be selected.  

 
Figure 6: The autocomplete feature displays possible links. 



 
 

5.5 Program Inspection and Data Flow Visualization 
The inspector tool provides features to help users understand a 
program’s control structure and purpose. By investigating program 
constructs, users can identify and debug potential problems. 

5.5.1 Program Execution 

Ivy uses a stack-based synchronous execution model [42], 
employing a single link type for all data. This reduces complexities, 
such as the unpredictable arrival sequence of various parameters or 
the need for multiple identical links with different types. Program 
data is passed along links in generic packages, each containing a list 
of values with mixed type. Ivy currently supports Float, Vector3, 
and Boolean, however the data flow model is extensible. If multiple 
links connect to a node, all incoming packages are merged.  

When the program structure is updated, Ivy places all linked 
nodes into a stack. The stack creation algorithm ensures that each 
node precedes all other nodes found in its outbound tree of links. 
One problem facing data flow programming environments is how 
to specify the order of execution of parallel link chains. For 
instance, if two nodes emerge from a parent node, the order of 
execution could have consequences for nodes further along the 
chain. The current implementation places nodes in the execution 
stack following the creation order of their connecting links. 

5.5.2 Data Flow Visualization 

Ivy includes a feature for visualizing data flow between constructs. 
Data flow can be started, paused, or stopped at any time using the 
inspector tool. When the program is running, active data packets are 
represented by particle clouds that flow along each link (Figure 7; 
D1). The particles encode several properties of the data:  

Source – Colour represents the data’s original source sensor type, 
which allows users to trace each source’s path through the program 
structure. Particle colours match the corresponding sensor types 
shown on the medallions (Figure 5a, D3).  

Value – Data values are represented by particle size, with larger 
particles indicating greater values (D3). Values are scaled linearly 
based on a low- and high-value pair for each source sensor type.   

Frequency – The update frequency of the system is shown by the 
volume of particles flowing through each link. Each time a function 
is executed, a burst of particles traverses the link over a duration of 
1 second. If a function fails to produce a valid output, no particles 
are emitted, visibly indicating that there are errors (D1). Ivy 
currently processes all nodes in the stack at a frequency of 10 Hz. 

5.5.3 Debugging Tools  

Debugging tool suites are commonplace in many programming 
environments. In addition to starting and stopping the program and 

 
Figure 7: Data flow is visualized with particles of varying colour and 
size to depict the data source and changing values. 

data flow visualization, Ivy’s inspector tool allows users to freeze 
the data flow visualization in its current state. The step feature 
provides control over program execution, allowing users to step 
through program cycles at their own pace. Each press of the wand 
trigger passes execution to the next node in the stack, with the data 
flow following each step. The sequence feature is similar to the step 
feature, but delays the flow visualization at each step to make it 
easier for users to follow data flow along the logic chain. Lastly, the 
in/out links feature assists in the identification of linked nodes by 
highlighting inbound, outbound, or all connected links (Figure 8). 

 
Figure 8: The selected blue node is highlighted with rotating rings, 
with visual emphasis on its connected links and nodes. 

5.6 Real-world Sensing and Actuation 
Ivy programs can connect to external environmental sensors and 
actuators. Sensor input originates from Texas Instrument 
SensorTags [56]. Each unit contains a 9-axis IMU, and sensors for 
ambient temperature, pressure and relative humidity. Data is routed 
through an online data broker, Dweet.io [15], and is polled once per 
second to retrieve updates.  

If the user-defined program results in real-world objects 
changing states (e.g., lights turning on or off), a web-based REST-
API reacts to state changes by controlling a USB-connected Phidget 
relay board [26] and logs the outgoing data to a web server. 

6 Initial feedback sessions  
To identify current limitations and opportunities for further 
exploration, we invited eight professionals (1 female, aged 29-45; 
Table 2) with expertise in IoT, Information Visualization, and 
Computer Graphics to explore Ivy’s visual programming features. 
Participants had a range of programming experience, from novice 
to expert, and represented a wide spectrum of potential end-users. 
Aside from one first-time user, all had minimal to moderate 
experience with VR. Sessions lasted 45 to 60 minutes. 

 Area of Expertise Job Experience 
(years) 

IoT 
Knowledge 

P1 Building Information Modelling 5 4 
P2 Program Manager 2 4 
P3 Internet of Things 18 5 
P4 Interactive Data Visualization 8 3 
P5 Information Visualization 6 3 
P6 Software Development 18 4 
P7 Computer Graphics 12 3 
P8 Building Information Modelling 6 3 

Table 2: Participant backgrounds, experience. IoT knowledge was 
self-reported from 1 to 5 (Not at all to extremely knowledgeable). 



 
 

6.1 Protocol 
Participants underwent a brief training session to demonstrate Ivy’s 
user interface and feature set and then were guided through a series 
of example programs.  

Overview and Training (20-30 minutes) - Training took place in 
a virtual office environment and began with an introduction to the 
controllers and bimanual tool palette. Next, Ivy’s basic node 
creation and link authoring features were demonstrated by guiding 
participants through the steps to create two simple programs, with 
live connections to real-world sensors and actuators. 

Test Environments (15-20 minutes) - Users were then shown two 
example environments (described below) to demonstrate realistic 
application scenarios. After demonstrating the data flow 
visualization and debugging features, participants inspected 
programs to determine their basic purpose and were asked to locate 
and correct a small bug planted in one of the programs.  

Feedback - A questionnaire collected information about each 
participant’s profession and experience with IoT. Participants also 
answered Likert-based questions (scale 1-5) on the usefulness and 
various aspects of Ivy.  

6.2 Example Application Scenarios 
The first test environment was an industrial fabrication workshop. 
Accelerometer and gyro sensor readings from two machines were 
fed to triggers that monitored for high values. The trigger outputs 
were aggregated into a Boolean OR function, linked through an 
‘invert’ function to the workshop’s power supply port (Figure 9). 
This configuration triggered a power cut when excessive vibrations 
were detected to help reduce damage if a machine malfunctioned.  

The second environment was a museum space, in which several 
foot traffic sensors were linked to a central aggregator node. The 
mean value was forwarded to a trigger node that activated a large 
 

 
Figure 9: Example of a workshop with program links to automatically 
trigger a machine shut down. 

 
Figure 10: Example of a museum with program links to trigger the 
power to a central exhibit based on foot traffic. 

exhibit when enough people were present (Figure 10). These 
scenarios were used because VR could potentially help managers or 
technicians monitor and program such remote, intelligent spaces. 

6.3 Observations and Feedback 
From our observations, participants could quickly learn Ivy’s 
features. Once a particular feature was shown, participants could 
select and operate the correct tool with little prompting, “With only 
minimal instructions at the beginning I was able to carry on the 
tasks without too much supervision” (P6). 

Participants were generally receptive to Ivy and indicated cases 
where such a tool would be useful in their profession. P1 
summarized, “I can see this being very useful to gaining 
understanding of systems built by others or when trying to debug… 
A visual and physical interface for programming is much more 
accessible than standard coding”. Participants also recognized the 
utility of visual tools, in this context, for novice users: “I think it 
would be very powerful as a fun, low-barrier entry point to visually 
programming IoT devices and behaviours” (P4). Ivy’s visual 
features helped most participants easily identify our planted ‘bug’, 
which caused the visual data flow to cease at the affected node. 

Survey responses were positive about the virtual logic constructs 
(Q1; Figure 11) and features for visual debugging and data flow 
(Q4). P3 commented that the “Visualization of data flow could help 
users better understand the logic they are establishing”, with P7 
adding “I believe stepping along a program, and visualizing it in 
situ… would be very useful to debug very complex programs”. 

Participants had mixed opinions about the utility of VR for IoT 
authoring (Q5). Several identified specific benefits of VR, for 
example to make buildings “accessible off-site (remotely) or prior 
to construction” (P1). P3 found the spatial interface “intuitive” and 
P4 noted “I think the immersive aspect really adds to the 
experience. On a desktop, I think 3D navigation would encumber 
the experience.” However, some felt authoring applications in VR 
would be cumbersome: “I like the possibilities with VR but feel like 
it is slower and less direct than the desktop experience would be” 
(P2). Participants did, however, recognize the inherent trade-offs 
between platforms, noting that immersive authoring could likely be 
used in conjunction with traditional tools: “In my profession I'd 
think that an interesting combination would be to have VR for 
debugging and development phase and also for troubleshooting 
remotely the actual system, while AR could be useful when 
deploying the system in the real world ” (P4). 

Several participants provided comments about additional 
features they would like to see in a future version of Ivy, for 
example to encapsulate groups of constructs within sub-structures. 
Participants also said they would like to see a greater variety of 
visual encodings of information in the links and data flow 
visualization. 

 
Figure 11: Participant responses to aspects of the Ivy system. 

7 Discussion and Future Work 
Our prototype development environment provides a proof-of-
concept interface for spatially situated visual programming that 
leverages information about the spatial layouts of smart objects. Ivy 
demonstrates how the proposed guidelines result in a useful, 



 
 

functioning programming environment. Initial feedback suggests 
that it is possible to create 3D programs with an immersive interface 
that is easy to use and applicable to both novices and professionals. 
Participants saw value in Ivy for practical IoT applications and 
welcomed further integration with AR and desktop components. 

Our study revealed several limitations of the current system and 
areas of interest for future research. Participants quickly learned the 
interface and had little trouble applying the available features in the 
test scenes. However, we noticed limitations in the raycasting 
mechanism when selecting at far distances. Although the auto-
complete feature was very effective for completing links, more 
sophisticated selection techniques are likely required for dense 
arrangements or large environments. Future solutions could 
potentially leverage the specific advantages of virtual worlds to 
scale and warp space. For instance links may be authored in a world 
in miniature view [61] to reduce the required motion, or distant 
sections of a room could be reconstructed nearby for direct access. 

One issue raised by some participants was a need for further 
directional indicators in the program structure. Although we 
included elements such as top-to-bottom flow, animated directional 
markers on selected links, and visible data flow, some participants 
had trouble identifying the direction of a program before running or 
inspecting it in detail. Further developments could include modified 
construct shapes or more intuitive layouts.  

We are eager to develop a more fully-featured system with an 
elaborate range of functions and pre-sets and to explore these in 
deployments with hundreds or thousands of objects. Questions 
remain, however, about how to scale Ivy to more complex, real-
world situations. Some lessons can be borrowed from existing 
systems; for instance, whereas Max [42] addresses function 
scalability by relying primarily on text descriptors to differentiate 
objects, Scratch [50], NodeRED  [6], and Wyliodrin  [70] show the 
potential of organizing a large number of functions into a limited 
number of colours and shapes. Participants also indicated the need 
for features to encapsulate program structures into hierarchical 
elements; for example, once a program subroutine has been 
constructed, its visual representation can be replaced with a single 
element, such as a box, which can later be opened for editing. Such 
encapsulation features are commonplace in data flow languages 
such as Max, and help to create maintainable program structures. 

Participants were generally very receptive to the spatial aspects 
of virtual logic constructs and visual data flow, but some were 
hesitant about the utility of a VR system. We attribute this in part 
to some participants’ strong familiarity with desktop programming 
environments through their work (e.g. P6 with 18 years of desktop 
development experience). Conversely, other participants 
appreciated the potential of VR; for instance, P5, with a background 
in information visualization, commented that he was sceptical at 
first about the VR interface, but after using Ivy, saw strong potential 
in the visual and spatial nature of Ivy. 

To follow up on this initial feedback, formal studies are needed 
to identify the specific benefits of a spatial interface for situated 
programming. These benefits may be more readily realized through 
the spatially situated advantages of an AR platform, which our VR 
system did not allow us to fully explore. We would also like to 
investigate the benefits of a collaborative, mixed-platform system 
that integrates Ivy with desktop tools for back-end development, 
along with new interaction methods to increase end-user control 
over function arguments and parameters. Such future research 
should also include the invention of new lightweight and portable 
control devices to provide portability for mobile workers using AR. 
Furthermore, while many of Ivy’s current features may be adapted 
for an AR system, future work must investigate how to minimize 

visual clutter and prevent interference during complex real-world 
tasks [20]. 

In future work, it will also be interesting to explore the presented 
concepts in other domains, such as programming behaviours for 
immersive games, virtual architectural walkthroughs, or 3D 
storytelling applications. 

8 Conclusion 
This work introduced Ivy, a spatially situated visual programming 
environment that enables users to author IoT behaviours in a VR 
environment. An initial study on the benefits of an immersive VR 
platform and semantic object references demonstrated the merits of 
a spatial interface for such systems. More broadly, the work 
contributes a set of design guidelines for immersive visual 
programming and moves toward sophisticated spatial interface 
tools for authoring and understanding complex situated programs in 
mixed reality systems. These explorations highlight several 
potential benefits and limitations of such systems and allude to 
promising areas for future research.  
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