
1

Trigger-Action-Circuits: Leveraging Generative Design to
Enable Novices to Design and Build Circuitry

ABSTRACT
The dramatic decrease in price and increase in availability
of hobbyist electronics has led to a wide array of embedded
and interactive devices. While electronics have become
more widespread, developing and prototyping the required
circuitry for these devices is still difficult, requiring
knowledge of electronics, components, and programming.
In this paper, we present Trigger-Action-Circuits (TAC), an
interactive system that leverages generative design to
produce circuitry, firmware, and assembly instructions,
based on high-level, behavioural descriptions. TAC is able
to generate multiple candidate circuits from a behavioural
description, giving the user a number of alternative circuits
that may be best suited to their use case (e.g., based on cost,
component availability or ease of assembly). The generated
circuitry uses off-the-shelf, commodity electronics, not
specialized hardware components, enabling scalability and
extensibility. TAC supports a range of common
components and behaviors that are frequently required for
prototyping electronic circuits. A user study demonstrated
that TAC helps users avoid problems encountered during
circuit design and assembly, with users completing their
circuits significantly faster than with traditional methods.

Author Keywords
Prototyping; circuitry; generative design; circuit generation;

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.

INTRODUCTION
The ability to rapidly evaluate designs via prototyping is a
powerful and widely used approach amongst designers,
makers and researchers in many fields. In recent years,
several techniques and products have been developed to
allow novices to prototype circuitry and electronic devices
without extensive technical knowledge. Hardware platforms
such as Arduino or Phidgets allow users with minimal
electronics knowledge to construct functioning circuits, and
visual programming languages such as Wyliodrin enable
the authoring of higher-level software that interfaces with
such hardware. While these tools have reduced the barrier
to entry, they still require some technical background.

Despite advances in hardware development platforms,
novices are still intimidated by circuitry. The development
of circuits still requires extensive knowledge of electrical
theory as well as knowledge of, and about, a large library of
components. While more approachable hardware platforms

In Submission to UIST 2017. Do not distribute.

Figure 1: Overview of the Trigger-Action-Circuits interface, a system that uses a generative design approach to enable novices to
construct functional electronic circuits.

2

such as LittleBits1 and Phidgets [11] have been developed,
such platforms are constrained to the use of proprietary
components and subsequently, the functionality that is
supported by the manufacturer.

Similarly, while specialized programming languages can
simplify programming activities and make them more
approachable, they still require a base level of programming
knowledge (e.g., control flow, Boolean logic, memory,
etc.), which many designers and makers do not have. For
example, a recent study by Booth et al. showed that only six
out of twenty participants (some of which had programming
backgrounds), could successfully complete a simple
physical computing task [2].

In this paper, we present TAC (Trigger-Action-Circuits), a
system supporting novice users in the design and assembly
of functional electronic devices. The system uses a
generative design approach, allowing users to specify
desired functionality at an abstract behavioural level using
triggers (i.e., inputs) and actions (i.e., outputs), as well as
continuous ‘to-from’ mappings. From this specification,
TAC generates a variety of candidate circuits using its
database of components, and presents the alternatives to the
user so that they can choose the most appropriate circuit for
their task. TAC is able to generate and upload the
associated firmware to a microcontroller, and creates the
corresponding diagram and assembly instructions to guide
the user through the construction process.

TAC is currently developed for use with Arduino-
compatible microcontrollers, and can support numerous
input and output components. While this initial
implementation is sufficient to support a wide range of
circuits and behaviors, the concepts which we present could
be extended to support other hardware platforms and
component libraries. We demonstrate the use of TAC for
the design and assembly of a variety of circuits, including
those from the Arduino Starter Kit. A study shows that
TAC helps users avoid problems encountered during circuit
design and assembly, with users of the system able to
complete the “Love-o-Meter” circuit in an average of 36
minutes, while all participants in the baseline condition
unable to finish within the 45 minute time frame.

RELATED WORK
Recent developments in the rapid prototyping of electronics
have enabled users to quickly implement, assemble, and
evaluate their ideas with greater ease and fidelity. We build
on this prior work, and also draw inspiration from the field
of generative design, which leverages computation to
automatically synthesize design variants.

Assembling Circuits
Novices can have substantial difficulty working with and
assembling electronics. Booth et al. [2] conducted a study
in which novices were asked to construct a simple circuit

1 www.littlebits.cc

with an Arduino, given only a high-level description of the
circuit’s behaviour. Participants encountered a number of
challenges along the way, including choosing the wrong
components, using the wrong logic and variables, and
wiring components incorrectly. Only 6 of the 20
participants successfully completed the task, highlighting
the need for approaches and tools to simplify this process.
Mellis et al. [20] conducted a series of workshops probing a
similar problem – how novices would construct electronics
using circuit boards. These workshops were much more in-
depth, but revealed some similar findings, such as
erroneous component selection and debugging, but also
called for new tools to provide “better abstractions in circuit
design software”.

Recently, Drew et al. developed the Toastboard, an
intelligent breadboard that can assist novices during circuit
debugging [9]. This device provides LED indicators on the
breadboard itself, along with a software interface that gives
more detailed information to the user, including potential
troubleshooting tips. In contrast to this hardware solution,
which aids in circuit debugging, TAC presents a software
solution to aid in circuit design and assembly.

Rapid Prototyping of Electronic Devices
Several systems have developed solutions that enable users
to integrate custom circuitry into their projects. Some of
these approaches, such as Inkjet Circuits [16] and Circuit
Stickers [14] have enabled users to design and fabricate
circuits using readily-available hardware such as inkjet
printers. Custom hardware platforms, such as Phidgets,
littleBits, PaperPulse [22], RetroFab [21], and work by
Hartmann et al. [12, 13], provide hardware solutions for
users to develop systems that make use of specific
electronics with little effort. However, these systems are
limited to supporting the proprietary hardware modules
developed specifically for the respective systems. In
contrast, TAC makes use of commercial, off-the-shelf
components and supports a wide array of Arduino-
compatible microcontrollers and standard electronic
components.

There are also number of software-centric approaches that
aim to simplify the programming of circuits and electronic
devices. ACAPpella [7] and iCAP [8] allow for
programming by demonstration of context-aware
applications, letting the user demonstrate the trigger they
wish to recognize directly, with no programming involved.
However, their approach is limited to specialized hardware
and a narrow set of recognizable triggers. In a similar
fashion, the context toolkit [6, 24] allows for simple
composition of recognizable contexts, but still requires
knowledge of programming. In contrast, TAC presents
users with a high-level visual programming language,
lowering the threshold for use and simplifying the
specification of the desired behaviour. Additionally, TAC
uses off-the-shelf, commercially available hardware. Both
the supported behaviours as well as the components are

3

modifiable by end users, enabling users with technical
knowledge to increase the capabilities of the system with
minimal effort.

A number of visual programming languages have been
developed to ease hardware programming and data flow
management, such as Jigsaw [15], NodeRED2, and
LabVIEW3. Similarly, Pineal [18] leverages a visual
programming language to enable users to prototype
interactive objects using a smart phone. Unfortunately,
these languages are simple visual representations of
complex programming concepts (e.g., flow control,
variables), or have limited hardware support. In contrast,
IFTTT4 allows for the high-level specification of
behaviours through trigger-action programming, but is
limited to select commercial products (e.g., Phillips Hue,
Twitter) and does not support custom hardware devices.

Generative Design
Generative design has emerged as a means to enable
designers, engineers and artists to specify high level rules,
goals, constraints, or problems and have the computer
produce and present potential solutions [10]. In contrast to
traditional design approaches where users select, modify,
and create all elements of design, a generative design
approach “provides tools to vary designs beyond direct
manipulation of specific design elements” [27]. Enabling
the designer to operate at a high-level and leveraging
computational power to explore alternatives allows for a
greater number of designs to be evaluated, and can enable
the creation of designs that would not have been possible by
humans alone [4]. This approach could also be used as a
pedagogical tool for novice designers [5], providing a
platform for introducing key concepts of the target domain.

These prior systems that leverage generative design
typically allow users to specify geometry, forces, or other
physical constraints [17] and then the system presents a set
of 3D objects that meet these requirements using
approaches such as topology optimization [1] or genetic
algorithms [3]. In contrast, this work enables designers to
specify the desired behavioural requirements of an
electronic device, with the system generating the required
circuitry. While the objective is similar to traditional
geometry-based generative design, (i.e., the high-level
specification of design goals), the domain, implementation,
and use case are different and pose unique challenges.

There is existing work within the field of electronic design
automation (EDA) to leverage computation to optimize the
design of circuitry [19]. Such approaches focus on the low-
level design and optimization of circuitry [25, 26], enabling
circuits that are more robust or efficient than what could be
designed by hand. These existing works support highly-

2 www.nodered.org

3 www.ni.com/labview
4 www.ifttt.com

technical engineers in refining and creating complex
circuitry, whereas the current work focuses on enabling
novices to author and prototype electronic devices.

TRIGGER-ACTION CIRCUITS
TAC is a system that generates circuitry, firmware, and
assembly instructions from a user’s high-level behavioural
description of the desired functionality.

User Walkthrough
To illustrate a typical use case of TAC, a sample scenario is
described in which a designer would like to construct a
device that monitors the temperature of a storage room. The
device should be able to display the current temperature on
an LCD panel, turn on a warning light if the temperature
exceeds 40°C, and sound an alarm if the temperature
exceeds 80°C.

Authoring
To begin authoring the behaviour of the circuit, the user
begins by dragging a Map From ‘Heat’ node onto the
workspace. They add a Map To ‘Display Text’ node and
connect them together using a line. The user then adds a
Map To ‘Variable value’ node, connecting that to the ‘heat’
node, causing a variable (‘Heat’) to be created and assigned
the value of the heat so it can be used with the triggers. The
user then adds two ‘Watch variable’ Trigger nodes, and
configures them to trigger when the ‘Heat’ value is greater
than 40°C and 80°C respectively, and connects them to
‘Glow’ and ‘Buzz’ actions that they add to the canvas. The
resulting visual program (Figure 2) contains a relatively
small number of elements and requires minimal user
interaction to define. Additionally, the high-level naming
and pictorial representation of the behaviours allow the user
to quickly see at a glance what the intended function of the
program is.

Figure 2: The authored behaviour of the circuit within the
authoring canvas. Triggers, actions, and mapping nodes are
dragged from the side panels into the center canvas where the
use can link them using a visual programming interface.

4

Circuit Selection
During the authoring process, a table of candidate circuits
(Figure 3) is updated in real-time, allowing the user to see
the effects of adding each behaviour to the workspace. Each
row in the table represents a single candidate circuit, with
the values in that circuit representing summary values for
the entire circuit. Given that there may be parameters the
user is interested in that are not specified in the behaviour
(e.g., cost, size, power consumption), the system generates
several variants using its database of known components.
After completing the authoring, the user inspects the table
of potential circuits that will be able to perform the
specified behaviour and begins to explore the circuits to
determine the most suitable circuit.

As the user is interested in rapidly prototyping the circuit
using components they have on-hand, they sort by
‘Components available’. The user notices that some circuits
use an Arduino Micro board controller, which they do not
have on hand, so they filter those out using the filtering tool
in the circuit diagram. After exploring a few circuits and
visually comparing diagrams, they select one that has low
difficulty and they have all the components for. They also
inspect the lowest-cost circuit to get an understanding of the
total cost of the circuit if they wanted to produce the circuit
in larger quantities.

Figure 3: Generated circuit explorer which allows users to
explore the variety of possible circuits synthesized by the
system. From this view, users can sort based on criteria, and
select the row to populate the diagram, assembly instructions
and firmware.

Assembly
The user begins assembly by inspecting the components in
the diagram, and placing them in the breadboard (Figure 4).
As they place the component, the user hovers over each one
in the diagram, revealing various parameters and properties,
as well as assembly tips that will help them avoid common
pitfalls. These tooltips can also provide contextual
information, such as the name of the component or its
typical function within common circuits.

Figure 4: Rendered circuit diagram with tooltip for the
temperature sensor shown. The tooltip is enlarged for
readability within this paper.

Once the components are placed, the user wires the circuit
together, following the interactive instructions (Figure 5,
right). By clicking on each instruction, the corresponding
wires in the diagram are highlighted, with the unrelated
wires dimmed out. This allows the user to clearly see what
connections are to be made.

Figure 5: Generated firmware and assembly instructions.

Figure 6: The assembled, functioning circuit.

Upload and Testing
Following assembly, the user may inspect the code to gain
an understanding of the underlying program. Once satisfied,
they can upload the code directly to the Arduino (Figure 5,
left), with the interface providing feedback when the upload

5

is complete. Once uploaded, the users can test and try out
their design (Figure 6).

INTERFACE ELEMENTS
The user interface is divided into five panels for each of the
tasks the user must complete to construct their circuit.

Authoring Canvas
A behaviour is specified through a visual programming
language where users can specify two types of connections:
Trigger-Action (TA) mappings, or From-To (FT) mappings.
TA mappings allow users to specify an action to complete
when a trigger event occurs (e.g., when a button is pressed,
turn on a light). FT mappings allow users to specify linear
relationships between input parameters and output
parameters (e.g., map the angle of a knob to the speed of a
motor). These two concepts provide a simple way to
address much of the functionality for many prototypes and
proof-of-concept applications, and provide a low threshold
[23] for novices to begin using the system to explore their
designs. Triggers can only be linked to Actions, and Map-
From can only be linked to Map-To nodes. To support more
complex behaviours with delays, for instance, Actions can
be chained together, allowing a single Trigger to cause a
sequence of Actions to execute.

Within this framework, variables and logical operators such
as ‘AND’ are supported as behaviours, which raises the
ceiling of what users can do with the software. Variables
are accessible through top-level behaviours in all TA and
FT panels. Users can invoke actions when variables take a
given value, set variables when a particular event occurs,
and variables can also have their value mapped to an input,
or have their value used as input to a ‘map from’ behaviour.
While the use of variables introduces some complexity for
the user, it dramatically increases the available functionality
of the system, and allows for much richer circuit design.

Behaviours can also define parameters that the user can
specify. For instance, the temperature threshold that a
‘Hotter Than’ behaviour triggers on is specified as a user-
defined parameter. If users need to specify multiple
parameters, they can clone the parameter set, which creates
an additional set of parameters for that behaviour that the
user can specify through a dialog box accessible by double-
clicking the behaviour. This is useful in instances where
multiple triggers are needed that stem from a single
component, for instance, setting three separate temperature
thresholds. Without this cloning functionality, users would
have to create three separate ‘Hotter Than’ nodes, and the
resulting circuits would use three separate temperature
sensors.

Generated Circuit Explorer
To facilitate circuit selection, TAC provides users with a
spreadsheet-like interface to inspect and explore generated
circuits. Each potential solution to the desired behaviour is
presented as a row in the generated circuit explorer. Users

can sort and navigate the columns to find their desired
circuit.

To assist the user in selecting a circuit, TAC computes
several metrics for each circuit. The table can be sorted by
each of these metrics by clicking on the associated column
header. Cost is the sum of the cost of all components used
in the circuit. Components available is computed based in
the local database of what components are on-hand – this is
currently manually maintained but a future version could be
automated and integrated with a component purchasing
process. Difficulty is computed as a function of the number
of components and the encoded connection methods (e.g.,
surface mount components are weighted as being more
difficult than through-hole components). Volume and power
consumption are computed based on the component’s
defined parameters. Popularity and assembly time are using
manually coded estimates for each component.

Circuit Diagram
Once a circuit is selected in the explorer, the corresponding
diagram is created and displayed on the canvas. Users can
zoom and pan the canvas to inspect the circuit and terminal
names. A button at the top of the diagram allows users to
render the components on a breadboard (default), or remove
the breadboard and show the components directly wired
together. By clicking each wire, all other wires become
more transparent, allowing the selected wire to be
highlighted making its connections more apparent.
Additionally, the instruction corresponding to that wire
becomes highlighted in the assembly instructions, giving
the user additional context for the connection.

Users are able to filter circuits using the component
diagram. By hovering over each component, users can view
details about that component, and filter circuits containing
that component. This functionality is useful for users who
do not have specific components on hand, or who identify
components as being too expensive or otherwise unsuitable
for their application.

Assembly Instructions
TAC automatically generates instructions once a circuit is
selected from the table. The assembly instructions provide a
step-by-step guide for the user to wire the resulting circuit
together. Each step is described in text (e.g., ‘Connect the
ground of LED1 to GND of Arduino Uno’), which exposes
users to some of the technical terms used in circuitry to help
build electronics knowledge. In addition, as steps in the
interface are selected, the related connection highlights in
the circuit diagram, giving the user a visual reference for
the connection.

Instructions can be further augmented, if one of the
components specifies assembly hints in its definition. For
instance, the LEDs in the system specify ‘Ensure the
component is oriented the proper way – direction matters’.
As connecting some components incorrectly can cause
damage (e.g., capacitors, temperature sensors) or cause the

6

system to function incorrectly, these tips are intended to
help novices avoid problems with circuit assembly.

Firmware
Once generated, the firmware can be inspected and directly
edited by the user. This functionality may be useful to
novices interested in learning more about electronics and
programming, as it exposes them to the code that executes
their behaviour. Exposing the firmware may encourage
tinkering, as users can modify and upload the program
without fear of causing an irreversible error as the original
program can be regenerated by the system. Currently,
changes directly to the code do not impact the rest of the
interface (e.g., updating the authoring canvas or
parameters).

Presenting the firmware allows users to create arbitrarily
complex programs by exposing the full functionality of the
microcontroller. More advanced users may find this feature
useful as they can use the visual programming language to
define the basic functionality and component interactions,
use the circuit generation and filtering to select components
and provide the wiring, then use the firmware editor to add
more advanced or specific functionality not exposed
through existing behaviours.

Once firmware has been selected and/or modified, clicking
the upload button will compile and upload the firmware to
the microcontroller that is attached to the USB port.

IMPLEMENTATION
TAC is implemented as a desktop application written in C#
and WPF.

Components
Each component that TAC supports is defined using a
declarative specification within an XML file (Figure 7).
This format allows for the addition or modification of
components by third-party authors. Each component is
defined by a number of top-level parameters as well as a list
of terminals. The top-level parameters describe the type of
component (i.e., which requirement it fulfils), as well as its
name, description, cost, graphical image, and whether it’s
currently available to the user. An additional flag indicates
if the component can be re-used or shared by other
behaviours. Each of its terminals represents a (potential)
electronic connection to another component in the circuit.
Each terminal is described by its name, type of connection,
direction of connection, terminal location within the image,
and whether the terminal can be shared. If specific
terminals are accessed by behaviours directly (e.g., reading
temperature from an analog out terminal), that terminal will
be given a name to allow behaviours to reference it.

The current implementation of TAC contains a variety of
components to support a broad spectrum of behaviors.
Several sensors and switches are currently supported
including a temperature sensor, light sensor, accelerometer,
infrared distance sensor, momentary switch, and sound
sensor. A number of actuator components are also

supported, including a number of LEDs, an audio buzzer, a
DC motor, servo motor, and a vibrotactile motor. Currently,
two microcontrollers are fully supported: the Arduino UNO
and the Arduino Micro. The database also contains a
number of passive components, such as resistors and
capacitors.

Behaviours
The supported high-level behaviours (i.e., Triggers,
Actions, Mappings) within TAC are also defined using an
XML syntax (Figure 7). As with components, this allows
end users with technical knowledge to define and share new
behaviours. A behaviour defines the components it depends
on, the parameters it supports, as well as several code
fragments defining the functionality. The required
components list must match those ‘types’ defined in the
component library. Each parameter defines a name, as well
as a source and type. The parameter source defines how the
parameter will be defined (i.e., by the system, component,
or by the user). The parameter type defines what
microcontroller resource will be used, if any (e.g., analog
input, PWM output, etc.). A behaviour also defines code
fragments that will be placed into a larger template to
assemble the complete functionality. Behaviours can
provide code that is run during initialization (setup), each
time the state is checked (function), as well as to the global
area of the program to define global variables or include
additional program directives (header).

Using this approach, both simple and more complex
behaviours are possible. Examples of supported triggers
are: when the temperature exceeds a threshold, when a
device is tilted, or when a button is pressed.

Figure 7: Sample definitions for a ‘button’ component (left)
and ‘button pressed’ trigger (right).

Circuit Generation
To generate the circuits, TAC uses a breadth-first,
recursive, dependency resolution. As each trigger and
action enumerates the class of components it needs (e.g.,
‘button’), and each component lists the components it
requires (e.g., ‘microcontroller’, or ‘resistor’), the algorithm

7

is able to explore all possible circuit solutions to the current
mapping. As each component is added and each
dependency is resolved, a list of consumed and available
terminals is maintained. For example, no two components
would be able to use the same ‘A0’ port on an Arduino, as
it is not shareable; if a second component needing analog
input were added to a circuit already using the ‘A0’ port, it
would be assigned to ‘A1’.

The circuit resolution halts when all dependencies have
been met. As the algorithm compiles possible circuits, it
maintains the state of each, compiling statistics such as the
total cost, number of components, and total volume. While
this approach is efficient and suitable for the current
behaviour and component library, a more sophisticated
approach will likely be necessary as the number of
supported components increases. More complex filter
criteria may be useful to help pare down the increased
number of possible circuits that are returned by the system.

Variable Types
TAC uses three variable types to enable the generation of
circuits: user, component, and system.

User variables are parameters which require user input or
configuration of a behaviour. These parameters are
presented with a plain-language description, and reasonable
default values. Behaviours can leverage user-defined
variables to provide inputs and parameters to their
functionality. For example, the ‘Hotter than’ trigger
provides a ‘threshold’ variable which the user specifies to
define the target threshold for the trigger to execute.
Similarly, the ‘Display text’ action leverages these
parameters to allow the user to specify a string (or series of
strings) as input, as well as a Boolean input value
(presented as a checkbox) to specify if the strings should be
displayed in order of input, or randomly.

Component variables are specified by the behaviour, and
defined by the component that satisfies that behaviour. For
instance, the ‘Hotter than’ behaviour requires a sensor that
is able to sense temperature based on an analog voltage
reading. Each component that satisfies this behaviour must
specify the mapping between voltage and temperature (in
Celsius). This mapping is defined through a component-
provided variable which specifies the functional
relationship between voltage and temperature.

System variables have their values specified by the system
during the circuit-resolution process. These variables are
used in both behaviours are components, and are used to
specify pin mapping. With the ‘Hotter than’ example, the
behaviour specifies that it is expecting to read a voltage
from $analog_pin which corresponds to the voltage
provided to the temperature sensor. The component
providing the analog value annotates which of its terminals
provides the $analog_pin corresponding to the temperature.
After mapping and circuit resolution, the system replaces
the appropriate values with the mapped values to ensure

that the behaviour is reading the value from the appropriate
pin (e.g., A0, A1, etc).

Firmware Authoring
TAC generates Arduino compatible code in response to the
behaviours created by the user. As parameterized code
fragments are associated to each supported Behaviour, TAC
can combine and compile each of the fragments into a
single executable program using the following steps.

First, each of the parameters is replaced within the code
fragment with its respective value (e.g., the user specified
value, or the system determined value). The system also
appends unique identifiers to function names and variables
within a trigger or action, allowing for the many-to-many
association. This replacement process operates across all
defined triggers and actions. Once processed, the triggers
and actions are compiled into a master template which
assembles the header, setup, and function code for all
defined behaviours into an Arduino-compatible format with
setup() and loop() function declarations. Once complete, the
assembled code is written to a file, then compiled and
uploaded to the connected Arduino board.

Assembly Instruction Creation
Within TAC, instruction generation is a relatively
straightforward process. As each terminal-to-terminal
connection is retained during the circuit generation process,
the system has a record of which component is connected to
which pins. Using this knowledge, the system can generate
the appropriate connection list using a lookup table. This
approach is sufficient to enable users to understand which
terminals should be connected, and supplements the
diagram which the users can cross-reference.

VALIDATION
To validate that the system could support the authoring of a
wide range of circuitry, the authors replicated the
functionality of the fourteen projects contained within the
Arduino starter kit5. These projects span a wide range of
functionality, from creating and sensing digital and analog
signals, serial communication, monitoring and changing
program state, and include a wide variety of electronic
components. While the functionality of each project was
replicated (in terms of inputs and outputs), the generated
circuit and firmware were different between the provided
solution and the one produced by TAC due to the
algorithmic way in which TAC generates the solutions.

For clarity and due to space limitations, only two of the
fourteen solutions are provided here, and contrasted with
the solutions that accompany the starter kit.

One representative project in the Arduino starter kit is the
‘Light Theremin’, where a buzzer produces a tone, and the
pitch of that tone is controlled by the amount of light falling
on a sensor. This project requires the use of the continuous

5 https://www.arduino.cc/en/Main/ArduinoStarterKit

8

Figure 8: Sample of solution for Light Theremin project. The
left column shows the program (top) and TAC-generated
circuit (bottom), while the right column shows the provided
code and circuit from the Arduino starter kit. Note the
solutions are similar in terms of the components and circuitry
generated.

mapping functionality (i.e., Map-From and Map-To) within
TAC. To author this functionality within TAC, the designer
connects a ‘Map From Brightness’ to a ‘Map To Sound
Pitch’, and provides two sample mappings which will be
used in the linear interpolation mapping (e.g, 10
Lux→100Hz, 50Lux→2000Hz). The six generated circuits
all contain four components, and generate 31 lines of code,
while the Arduino starter kit solution uses four components
and 29 lines of code.

A second project from the starter kit is the ‘Spaceship
interface’, which consists of 3 LEDs and a button. When
the button is pressed, two of the LEDs illuminate in an
alternating pattern; when the button is not pressed, the third
LED lights up. With TAC, this is accomplished by using
the ‘Button pressed’ trigger with two conditions (pressed
and not-pressed), linked to ‘Glow’ and delay actions
(Figure 9). All of the 108 resulting generated solutions to
this behaviour use 9 components, and generate 105 lines of
code, while, the provided Arduino starter kit solution use 9
components and 30 lines of code.

In general, the generated solutions contain more complex
code, and often have more complex wiring schemes than
the handcrafted, tailored alternatives in the starter kit
examples. However, this validation demonstrates the
breadth of the system, and also illustrates how limited input
from the user (e.g., Mapping brightness to sound pitch) can
be sufficient for the system to create the circuitry, software,
and assembly instructions for the user.

Figure 9: Sample of solution for Spaceship Interface project.
The left column shows the program (top) and TAC-generated
circuit (bottom), while the right column shows the provided
code and circuit from the Arduino starter kit.

USER STUDY
Though TAC is able to generate a broad set of circuitry and
software that covers the content in the introductory Arduino
material, it is not clear if this proposed paradigm is more
approachable to users looking to design their own circuitry.
To better understand this, we conducted a study which
assessed how well novice users were able to design, select,
and assemble desired circuitry using TAC.

As a representative task, we used the ‘Love-o-Meter’
project from the Arduino starter kit, which was also studied
by Booth et al. [2]. This task was chosen as it is of
moderate difficulty for a novice, can be completed in under
an hour, uses a variety of components and programming
concepts, and is grounded in prior work. Participants
completed this task using either TAC (TAC condition), or
using the Arduino IDE (Arduino condition) as in Booth et
al [2].

Participants
Twelve individuals (8 male, M = 35, SD = 7.8 years of age)
were recruited to participate in the study. The experiment
lasted approximately one hour and participants received a
$25 gift card as compensation for their time.

Before participating, participants self-reported their prior
experience with programming and electronics. This
information was used to balance the participants between
the two conditions to ensure the populations were
comparable. Mann-Whitney U tests indicated there was no
significant difference between the two populations in terms
of self-rated electronics experience (U = 16.0; p = 0.82) or
programming experience (U =12.0; p = 0.39).

9

Figure 10: Photograph of the user study setup, with the
participant building the circuit without the use of TAC.

Procedure
Participants were informed that they would be building a
circuit using an Arduino. They were also given a brief
tutorial on breadboards demonstrating how connections can
be made with a breadboard (i.e., row-wise and column-wise
connections). Depending on the condition, they were either
given a brief overview of the Arduino IDE or the TAC
interface. For the Arduino condition, participants were
shown the editor, the upload and verify functionality, as
well as the web browser (Google Chrome). Within the TAC
condition, participants were shown the authoring canvas,
the generated circuit explorer, diagram area, as well as the
instruction and firmware windows.

After the introduction, participants were given a textual
description of the functionality that they were asked to
replicate. The text explained that their target circuit should
use three LEDs which light up in sequence, with more
LEDs lighting up as a temperature sensor detects hotter
temperatures. Participants were given 45 minutes to
complete the task, and were given all the components they
would need including some distractor components. They
were informed that they could use the internet to search for
help, but were instructed not to search for the exact solution
(e.g., do not search for ‘light three LEDs in sequence in
response to temperature’). This procedure is the same as
what was provided in Booth et al. [2] and describes the
functionality of the Love-o-Meter circuit presented in the
Arduino starter kit.

Results
All six of the participants using TAC completed the task
successfully, while none of the participants without TAC
were able to complete the task within the allotted time
(Figure 11). These results are similar to those presented by
Booth et al. [2] which found the majority of participants
unable to complete the circuit. For the participants using
TAC, the average completion time was 36 minutes (SD =
7.4 minutes), and a Mann-Whitney U test shows this is

significantly lower than the Arduino condition (U = 06; p <
0.01) where all participants exceeded the 45 minute time
frame. As none of the participants in the Arduino condition
finished, the task was decomposed into eight subtasks
representing observable milestones such as ‘uploaded a
program’ ‘connected temperature sensor’ and ‘controlled an
LED based on temperature value’. A Mann-Whitney U test
shows a significant difference between the Arduino and
TAC conditions (U = 0.0; p < 0.01) in terms of number of
subtasks completed; all participants in the TAC condition
completed all 8 tasks, participants in the Arduino condition
completed 4.5 tasks on average. Two participants struggled,
completing only 1 or 2 tasks, while three participants nearly
arrived at the solution, completing 6 or 7 of the 8 subtasks.

Figure 11: Graph of each participant’s total time during the
study, separated by time spent on the computer, and time
spent with the circuitry.

The time users spent actively using the computer (coding,
reading, etc.) versus the time spent working with the
circuitry (assembling the circuit, looking at the
components) was also compared. A Mann-Whitney U test
shows the time spent on the computer was significantly
different between the conditions (U = 2.5; p < 0.01). The
time spent with the circuitry was not different between the
two groups, likely because none of the participants in the
Arduino condition were able to complete the task, so the
time spent with circuitry is not reflective of the total time it
would’ve taken if they had finished.

Observations
Overall, the study demonstrated that TAC enabled people
without significant experience with circuitry to design and
construct functional electronic circuits. One participant felt
that after using TAC ‘I could tackle a much harder project
(and want to) that uses sound and social media’ (P9).

Participants found the behaviour authoring interface
intuitive, and most participants using TAC arrived at the
correct behaviour within 10 minutes. Some participants did
try to use To-From mappings unsuccessfully before
switching to the Trigger-Action paradigm. Additionally,

6 Note that U is zero because all values in the Arduino condition are greater than the
TAC condition.

10

one participant used multiple ‘Hotter Than’ behaviours
resulting in the use of 3 temperature sensors in the
subsequent circuits, which they corrected after seeing the
diagram.

Several elements of the interface were observed to be quite
useful for the novice participants, in particular the rendered
circuit diagram. Most of the participants did not follow the
step-by-step written instructions, but instead opted to wire
the circuit by looking at the diagram. Occasionally, these
participants would click on a wire in the diagram to
highlight it and see the related text (e.g., to see what pin it
was connected to). Participant comments reiterated the
perceived utility of the diagram ‘The mappings between
instructions and diagram was helpful’ (P15). ‘I liked how
the instructions highlighted the wire that needed to be
connected’ (P5). This behaviour of consulting the diagram
was not limited to participants using the TAC system.
Participants in the Arduino condition often consulted
photos or diagrams when trying to determine how to wire
and place components, even when there were textual
descriptions on the same page.

While participants were able to successfully navigate and
select a circuit within the generated circuit explorer, many
were unsure which circuit they should choose. Some opted
to minimize cost, while others chose at random. Few
seemed to note the ‘Components Available’ column was
relevant, indicating which circuits could be built with the
components they were given. User feedback suggests that
the ‘Circuit options [are] a little intimidating’ (P7). One
explanation for this is that the task was a laboratory study,
and elements such as cost and popularity may not have
relevance.

While most participants used the firmware window solely
to upload the code to the microcontroller, one participant
with some programming experience used it to edit the
parameters during testing. Before uploading, he first
skimmed the code to get a basic understanding, then, when
trying to determine which threshold parameter should be
used to trigger the lights, he edited the code directly and
uploaded it. While the same operation can be done using
the visual programming interface, it took less effort and was
perhaps more intuitive to directly modify the code.

FUTURE WORK
Our work has shown that the use of goal-driven design to
define circuitry can enable novice users to design and
construct electronic devices that they may otherwise be
unable to. However, there are still a number of limitations
to TAC and areas of future work.

While TAC can generate circuits and software, neither the
code, nor the diagram is optimized for learnability. More
research is needed to optimize component placement and
orientation on the breadboard, optimize wiring paths by
minimizing crossings and total distance. Likewise, more
research is needed to determine how to make the code more

human-readable, to provide context on the function of each
part of the code, and the purpose of the fragment within the
larger program. If solved in future projects, then users could
more effectively learn electronics from the system’s output,
and it could be capable of generating custom tutorials for
students.

The system is currently limited to generating Arduino-
based circuitry and further work is needed to support the
generation of circuits that do not include a microcontroller.
For example, having an LED glow when a button is pressed
only requires a button, resistor, LED and battery, yet with
TAC, supporting this behaviour also requires an Arduino,
which drastically increases the cost and complexity.

The current system is focused on novice users, however, the
application of generative design and design synthesis has
many use cases amongst expert users as well. More
research is needed to understand potential use cases of
professional embedded developers, and to better determine
how generative design can be applied to assist their
workflows.

Lastly, as the circuit and software generation is an
automated process, it isolates the user from how the circuit
functions, making debugging difficult if something goes
wrong. As such, the user does not know if the issue is with
their program, or their assembly of the circuits (and
components). One potential method to mitigate this is by
integrating a software simulator so the user can verify their
logic is correct before assembling the circuit. However,
more research is needed to provide tools that allow users to
more accurately debug within this paradigm, perhaps
integrating new technology, such as Toastboard [9].

CONCLUSION
This paper presented TAC, the first system capable of
leveraging generative design to create a multitude of design
variants for circuitry. The system has a low threshold for
novices to begin designing circuitry, and provides the
circuit diagram, code, and assembly instructions to enable
them to construct a functioning circuit. Through validation
by recreating existing projects, and a user study comparing
it to the Arduino baseline, TAC was shown to be useful and
usable by novice circuit designers, and more efficient than
novices using more traditional approaches.

REFERENCES
1. Martin Philip Bendsoe and Ole Sigmund. 2013.

Topology optimization: theory, methods, and
applications. Springer Science & Business Media.
Retrieved March 10, 2017 from
https://books.google.ca/books?hl=en&lr=&id=ZCjsCA
AAQBAJ&oi=fnd&pg=PA1&dq=topology+optimizati
on&ots=y0ffg_7F5J&sig=q5YI0tzfMgsMoph42afZ0b
p0HKs

2. Tracey Booth, Simone Stumpf, Jon Bird, and Sara
Jones. 2016. Crossed Wires: Investigating the
Problems of End-User Developers in a Physical

11

Computing Task. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16), ACM, 3485–3497.
http://doi.org/10.1145/2858036.2858533

3. Luisa Caldas. 2008. Generation of energy-efficient
architecture solutions applying GENE_ARCH: An
evolution-based generative design system. Advanced
Engineering Informatics 22, 1: 59–70.

4. Amaresh Chakrabarti, Kristina Shea, Robert Stone, et
al. 2011. Computer-Based Design Synthesis Research:
An Overview. Journal of Computing and Information
Science in Engineering 11, 2: 021003-021003-10.
http://doi.org/10.1115/1.3593409

5. Scott C. Chase. 2005. Generative design tools for
novice designers: Issues for selection. Automation in
Construction 14, 6: 689–698.

6. Anind K. Dey, Gregory D. Abowd, and Daniel Salber.
2001. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-aware
Applications. Hum.-Comput. Interact. 16, 2: 97–166.
http://doi.org/10.1207/S15327051HCI16234_02

7. Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li,
and Daniel Hsu. 2004. A CAPpella: Programming by
Demonstration of Context-aware Applications.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’04), ACM, 33–
40. http://doi.org/10.1145/985692.985697

8. Anind K. Dey, Timothy Sohn, Sara Streng, and Justin
Kodama. 2006. iCAP: Interactive Prototyping of
Context-Aware Applications. In Pervasive Computing,
Kenneth P. Fishkin, Bernt Schiele, Paddy Nixon and
Aaron Quigley (eds.). Springer Berlin Heidelberg,
254–271. Retrieved November 12, 2014 from
http://link.springer.com/chapter/10.1007/11748625_16

9. Daniel Drew, Julie L. Newcomb, William McGrath,
Filip Maksimovic, David Mellis, and Björn Hartmann.
2016. The Toastboard: Ubiquitous Instrumentation and
Automated Checking of Breadboarded Circuits.
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16), ACM,
677–686. http://doi.org/10.1145/2984511.2984566

10. Bruno Ferreira and António Leitão. 2015. Generative
Design for Building Information Modeling. Real Time-
Proceedings of the 33rd eCAADe Conference, 635–
644. Retrieved March 10, 2017 from
http://papers.cumincad.org/data/works/att/ecaade2015_
118.content.pdf

11. S. Greenberg and C. Fitchett. 2001. Phidgets: easy
development of physical interfaces through physical
widgets. ACM, 209–218.

12. Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring Sensor-based
Interactions by Demonstration with Direct
Manipulation and Pattern Recognition. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’07), ACM, 145–154.
http://doi.org/10.1145/1240624.1240646

13. Björn Hartmann, Scott R. Klemmer, Michael
Bernstein, et al. 2006. Reflective Physical Prototyping
Through Integrated Design, Test, and Analysis.
Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology (UIST ’06),
ACM, 299–308.
http://doi.org/10.1145/1166253.1166300

14. Steve Hodges, Nicolas Villar, Nicholas Chen, et al.
2014. Circuit Stickers: Peel-and-stick Construction of
Interactive Electronic Prototypes. Proceedings of the
32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14), ACM, 1743–1746.
http://doi.org/10.1145/2556288.2557150

15. Jan Humble, Andy Crabtree, Terry Hemmings, et al.
2003. “Playing with the Bits” User-Configuration of
Ubiquitous Domestic Environments. In UbiComp
2003: Ubiquitous Computing, Anind K. Dey, Albrecht
Schmidt and Joseph F. McCarthy (eds.). Springer
Berlin Heidelberg, 256–263. Retrieved November 14,
2014 from
http://link.springer.com/chapter/10.1007/978-3-540-
39653-6_20

16. Yoshihiro Kawahara, Steve Hodges, Benjamin S.
Cook, Cheng Zhang, and Gregory D. Abowd. 2013.
Instant Inkjet Circuits: Lab-based Inkjet Printing to
Support Rapid Prototyping of UbiComp Devices.
Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp ’13), ACM, 363–372.
http://doi.org/10.1145/2493432.2493486

17. Sivam Krish. 2011. A practical generative design
method. Computer-Aided Design 43, 1: 88–100.

18. David Ledo, Fraser Anderson, Ryan Schmidt, Lora
Oehlberg, Saul Greenberg, and Tovi Grossman. 2017.
Pineal: Bringing Passive Objects to Life with
Embedded Mobile Devices. Retrieved April 2, 2017
from
https://autodeskresearch.com/sites/default/files/pineal.
pdf

19. Don MacMillen, Raul Camposano, D. Hill, and
Thomas W. Williams. 2000. An industrial view of
electronic design automation. IEEE transactions on
computer-aided design of integrated circuits and
systems 19, 12: 1428–1448.

20. David A. Mellis, Leah Buechley, Mitchel Resnick, and
Björn Hartmann. 2016. Engaging Amateurs in the
Design, Fabrication, and Assembly of Electronic
Devices. Proceedings of the 2016 ACM Conference on
Designing Interactive Systems (DIS ’16), ACM, 1270–
1281. http://doi.org/10.1145/2901790.2901833

21. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. RetroFab: A Design Tool
for Retrofitting Physical Interfaces Using Actuators,
Sensors and 3D Printing. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16), ACM, 409–419.
http://doi.org/10.1145/2858036.2858485

12

22. Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015.
PaperPulse: An Integrated Approach for Embedding
Electronics in Paper Designs. ACM SIGGRAPH 2015
Posters (SIGGRAPH ’15), ACM, 9:1–9:1.
http://doi.org/10.1145/2787626.2792650

23. Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, et al.
2005. Design principles for tools to support creative
thinking.

24. Daniel Salber, Anind K. Dey, and Gregory D. Abowd.
1999. The Context Toolkit: Aiding the Development of
Context-enabled Applications. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’99), ACM, 434–441.
http://doi.org/10.1145/302979.303126

25. Adrian Thompson, Paul Layzell, and Ricardo Salem
Zebulum. 1999. Explorations in design space:

Unconventional electronics design through artificial
evolution. IEEE Transactions on Evolutionary
Computation 3, 3: 167–196.

26. Vesselin K. Vassilev, Dominic Job, and Julian F.
Miller. 2000. Towards the automatic design of more
efficient digital circuits. Evolvable Hardware, 2000.
Proceedings. The Second NASA/DoD Workshop on,
IEEE, 151–160. Retrieved March 25, 2017 from
http://ieeexplore.ieee.org/abstract/document/869353/

27. Loutfouz Zaman, Wolfgang Stuerzlinger, Christian
Neugebauer, et al. 2015. Gem-ni: A system for
creating and managing alternatives in generative
design. Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
ACM, 1201–1210. Retrieved March 10, 2017 from
http://dl.acm.org/citation.cfm?id=2702398

