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Trigger-Action-Circuits: Leveraging Generative Design to 
Enable Novices to Design and Build Circuitry 

 

 

ABSTRACT 
The dramatic decrease in price and increase in availability 
of hobbyist electronics has led to a wide array of embedded 
and interactive devices. While electronics have become 
more widespread, developing and prototyping the required 
circuitry for these devices is still difficult, requiring 
knowledge of electronics, components, and programming. 
In this paper, we present Trigger-Action-Circuits (TAC), an 
interactive system that leverages generative design to 
produce circuitry, firmware, and assembly instructions, 
based on high-level, behavioural descriptions. TAC is able 
to generate multiple candidate circuits from a behavioural 
description, giving the user a number of alternative circuits 
that may be best suited to their use case (e.g., based on cost, 
component availability or ease of assembly). The generated 
circuitry uses off-the-shelf, commodity electronics, not 
specialized hardware components, enabling scalability and 
extensibility. TAC supports a range of common 
components and behaviors that are frequently required for 
prototyping electronic circuits. A user study demonstrated 
that TAC helps users avoid problems encountered during 
circuit design and assembly, with users completing their 
circuits significantly faster than with traditional methods. 
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INTRODUCTION 
The ability to rapidly evaluate designs via prototyping is a 
powerful and widely used approach amongst designers, 
makers and researchers in many fields. In recent years, 
several techniques and products have been developed to 
allow novices to prototype circuitry and electronic devices 
without extensive technical knowledge. Hardware platforms 
such as Arduino or Phidgets allow users with minimal 
electronics knowledge to construct functioning circuits, and 
visual programming languages such as Wyliodrin enable 
the authoring of higher-level software that interfaces with 
such hardware. While these tools have reduced the barrier 
to entry, they still require some technical background. 

Despite advances in hardware development platforms, 
novices are still intimidated by circuitry. The development 
of circuits still requires extensive knowledge of electrical 
theory as well as knowledge of, and about, a large library of 
components. While more approachable hardware platforms 
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Figure 1: Overview of the Trigger-Action-Circuits interface, a system that uses a generative design approach to enable novices to 
construct functional electronic circuits. 
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such as LittleBits1 and Phidgets [11] have been developed, 
such platforms are constrained to the use of proprietary 
components and subsequently, the functionality that is 
supported by the manufacturer.  

Similarly, while specialized programming languages can 
simplify programming activities and make them more 
approachable, they still require a base level of programming 
knowledge (e.g., control flow, Boolean logic, memory, 
etc.),  which many designers and makers do not have. For 
example, a recent study by Booth et al. showed that only six 
out of twenty participants (some of which had programming 
backgrounds), could successfully complete a simple 
physical computing task [2]. 

In this paper, we present TAC (Trigger-Action-Circuits), a 
system supporting novice users in the design and assembly 
of functional electronic devices. The system uses a 
generative design approach, allowing users to specify 
desired functionality at an abstract behavioural level using 
triggers (i.e., inputs) and actions (i.e., outputs), as well as 
continuous ‘to-from’ mappings. From this specification, 
TAC generates a variety of candidate circuits using its 
database of components, and presents the alternatives to the 
user so that they can choose the most appropriate circuit for 
their task. TAC is able to generate and upload the 
associated firmware to a microcontroller, and creates the 
corresponding diagram and assembly instructions to guide 
the user through the construction process.  

TAC is currently developed for use with Arduino-
compatible microcontrollers, and can support numerous 
input and output components. While this initial 
implementation is sufficient to support a wide range of 
circuits and behaviors, the concepts which we present could 
be extended to support other hardware platforms and 
component libraries. We demonstrate the use of TAC for 
the design and assembly of a variety of circuits, including 
those from the Arduino Starter Kit. A study shows that 
TAC helps users avoid problems encountered during circuit 
design and assembly, with users of the system able to 
complete the “Love-o-Meter” circuit in an average of 36 
minutes, while all participants in the baseline condition 
unable to finish within the 45 minute time frame. 

RELATED WORK 
Recent developments in the rapid prototyping of electronics 
have enabled users to quickly implement, assemble, and 
evaluate their ideas with greater ease and fidelity. We build 
on this prior work, and also draw inspiration from the field 
of generative design, which leverages computation to 
automatically synthesize design variants. 

Assembling Circuits 
Novices can have substantial difficulty working with and 
assembling electronics.  Booth et al. [2] conducted a study 
in which novices were asked to construct a simple circuit 
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with an Arduino, given only a high-level description of the 
circuit’s behaviour. Participants encountered a number of 
challenges along the way, including choosing the wrong 
components, using the wrong logic and variables, and 
wiring components incorrectly. Only 6 of the 20 
participants successfully completed the task, highlighting 
the need for approaches and tools to simplify this process. 
Mellis et al. [20] conducted a series of workshops probing a 
similar problem – how novices would construct electronics 
using circuit boards. These workshops were much more in-
depth, but revealed some similar findings, such as 
erroneous component selection and debugging, but also 
called for new tools to provide “better abstractions in circuit 
design software”. 

Recently, Drew et al. developed the Toastboard, an 
intelligent breadboard that can assist novices during circuit 
debugging  [9]. This device provides LED indicators on the 
breadboard itself, along with a software interface that gives 
more detailed information to the user, including potential 
troubleshooting tips. In contrast to this hardware solution, 
which aids in circuit debugging, TAC presents a software 
solution to aid in circuit design and assembly. 

Rapid Prototyping of Electronic Devices 
Several systems have developed solutions that enable users 
to integrate custom circuitry into their projects. Some of 
these approaches, such as Inkjet Circuits [16] and Circuit 
Stickers [14] have enabled users to design and fabricate 
circuits using readily-available hardware such as inkjet 
printers. Custom hardware platforms, such as Phidgets, 
littleBits, PaperPulse [22], RetroFab [21], and work by 
Hartmann et al. [12, 13], provide hardware solutions for 
users to develop systems that make use of specific 
electronics with little effort. However, these systems are 
limited to supporting the proprietary hardware modules 
developed specifically for the respective systems. In 
contrast, TAC makes use of commercial, off-the-shelf 
components and supports a wide array of Arduino-
compatible microcontrollers and standard electronic 
components. 

There are also number of software-centric approaches that 
aim to simplify the programming of circuits and electronic 
devices. ACAPpella [7] and iCAP [8] allow for 
programming by demonstration of context-aware 
applications, letting the user demonstrate the trigger they 
wish to recognize directly, with no programming involved.  
However, their approach is limited to specialized hardware 
and a narrow set of recognizable triggers. In a similar 
fashion, the context toolkit [6, 24] allows for simple 
composition of recognizable contexts, but still requires 
knowledge of programming. In contrast, TAC presents 
users with a high-level visual programming language, 
lowering the threshold for use and simplifying the 
specification of the desired behaviour. Additionally, TAC 
uses off-the-shelf, commercially available hardware. Both 
the supported behaviours as well as the components are 
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modifiable by end users, enabling users with technical 
knowledge to increase the capabilities of the system with 
minimal effort. 

A number of visual programming languages have been 
developed to ease hardware programming and data flow 
management, such as Jigsaw [15], NodeRED2, and 
LabVIEW3. Similarly, Pineal [18] leverages a visual 
programming language to enable users to prototype 
interactive objects using a smart phone. Unfortunately, 
these languages are simple visual representations of 
complex programming concepts (e.g., flow control, 
variables), or have limited hardware support. In contrast, 
IFTTT4 allows for the high-level specification of 
behaviours through trigger-action programming, but is 
limited to select commercial products (e.g., Phillips Hue, 
Twitter) and does not support custom hardware devices. 

Generative Design 
Generative design has emerged as a means to enable 
designers, engineers and artists to specify high level rules, 
goals, constraints, or problems and have the computer 
produce and present potential solutions [10]. In contrast to 
traditional design approaches where users select, modify, 
and create all elements of design, a generative design 
approach “provides tools to vary designs beyond direct 
manipulation of specific design elements” [27]. Enabling 
the designer to operate at a high-level and leveraging 
computational power to explore alternatives allows for a 
greater number of designs to be evaluated, and can enable 
the creation of designs that would not have been possible by 
humans alone [4]. This approach could also be used as a 
pedagogical tool for novice designers [5], providing a 
platform for introducing key concepts of the target domain. 

These prior systems that leverage generative design 
typically allow users to specify geometry, forces, or other 
physical constraints [17] and then the system presents a set 
of 3D objects that meet these requirements using 
approaches such as topology optimization [1] or genetic 
algorithms [3]. In contrast, this work enables designers to 
specify the desired behavioural requirements of an 
electronic device, with the system generating the required 
circuitry. While the objective is similar to traditional 
geometry-based generative design, (i.e., the high-level 
specification of design goals), the domain, implementation, 
and use case are different and pose unique challenges.  

There is existing work within the field of electronic design 
automation (EDA) to leverage computation to optimize the 
design of circuitry [19]. Such approaches focus on the low-
level design and optimization of circuitry [25, 26], enabling 
circuits that are more robust or efficient than what could be 
designed by hand. These existing works support highly-
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technical engineers in refining and creating complex 
circuitry, whereas the current work focuses on enabling 
novices to author and prototype electronic devices. 

TRIGGER-ACTION CIRCUITS 
TAC is a system that generates circuitry, firmware, and 
assembly instructions from a user’s high-level behavioural 
description of the desired functionality.  

User Walkthrough 
To illustrate a typical use case of TAC, a sample scenario is 
described in which a designer would like to construct a 
device that monitors the temperature of a storage room. The 
device should be able to display the current temperature on 
an LCD panel, turn on a warning light if the temperature 
exceeds 40°C, and sound an alarm if the temperature 
exceeds 80°C. 

Authoring 
To begin authoring the behaviour of the circuit, the user 
begins by dragging a Map From ‘Heat’ node onto the 
workspace. They add a Map To ‘Display Text’ node and 
connect them together using a line. The user then adds a 
Map To ‘Variable value’ node, connecting that to the ‘heat’ 
node, causing a variable (‘Heat’) to be created and assigned 
the value of the heat so it can be used with the triggers. The 
user then adds two  ‘Watch variable’ Trigger nodes, and 
configures them to trigger when the ‘Heat’ value is greater 
than 40°C and 80°C respectively, and connects them to 
‘Glow’ and ‘Buzz’ actions that they add to the canvas. The 
resulting visual program (Figure 2) contains a relatively 
small number of elements and requires minimal user 
interaction to define. Additionally, the high-level naming 
and pictorial representation of the behaviours allow the user 
to quickly see at a glance what the intended function of the 
program is. 

 

Figure 2: The authored behaviour of the circuit within the 
authoring canvas. Triggers, actions, and mapping nodes are 
dragged from the side panels into the center canvas where the 
use can link them using a visual programming interface. 
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Circuit Selection 
During the authoring process, a table of candidate circuits 
(Figure 3) is updated in real-time, allowing the user to see 
the effects of adding each behaviour to the workspace. Each 
row in the table represents a single candidate circuit, with 
the values in that circuit representing summary values for 
the entire circuit. Given that there may be parameters the 
user is interested in that are not specified in the behaviour 
(e.g., cost, size, power consumption), the system generates 
several variants using its database of known components. 
After completing the authoring, the user inspects the table 
of potential circuits that will be able to perform the 
specified behaviour and begins to explore the circuits to 
determine the most suitable circuit.  

As the user is interested in rapidly prototyping the circuit 
using components they have on-hand, they sort by 
‘Components available’. The user notices that some circuits 
use an Arduino Micro board controller, which they do not 
have on hand, so they filter those out using the filtering tool 
in the circuit diagram. After exploring a few circuits and 
visually comparing diagrams, they select one that has low 
difficulty and they have all the components for. They also 
inspect the lowest-cost circuit to get an understanding of the 
total cost of the circuit if they wanted to produce the circuit 
in larger quantities. 

 

Figure 3: Generated circuit explorer which allows users to 
explore the variety of possible circuits synthesized by the 
system. From this view, users can sort based on criteria, and 
select the row to populate the diagram, assembly instructions 
and firmware. 

Assembly 
The user begins assembly by inspecting the components in 
the diagram, and placing them in the breadboard (Figure 4). 
As they place the component, the user hovers over each one 
in the diagram, revealing various parameters and properties, 
as well as assembly tips that will help them avoid common 
pitfalls. These tooltips can also provide contextual 
information, such as the name of the component or its 
typical function within common circuits. 

 

Figure 4: Rendered circuit diagram with tooltip for the 
temperature sensor shown. The tooltip is enlarged for 
readability within this paper. 

Once the components are placed, the user wires the circuit 
together, following the interactive instructions (Figure 5, 
right). By clicking on each instruction, the corresponding 
wires in the diagram are highlighted, with the unrelated 
wires dimmed out. This allows the user to clearly see what 
connections are to be made. 

 

Figure 5: Generated firmware and assembly instructions. 

 

Figure 6: The assembled, functioning circuit. 

Upload and Testing 
Following assembly, the user may inspect the code to gain 
an understanding of the underlying program. Once satisfied, 
they can upload the code directly to the Arduino (Figure 5, 
left), with the interface providing feedback when the upload 
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is complete. Once uploaded, the users can test and try out 
their design (Figure 6). 

INTERFACE ELEMENTS 
The user interface is divided into five panels for each of the 
tasks the user must complete to construct their circuit. 

Authoring Canvas 
A behaviour is specified through a visual programming 
language where users can specify two types of connections: 
Trigger-Action (TA) mappings, or From-To (FT) mappings. 
TA mappings allow users to specify an action to complete 
when a trigger event occurs (e.g., when a button is pressed, 
turn on a light). FT mappings allow users to specify linear 
relationships between input parameters and output 
parameters (e.g., map the angle of a knob to the speed of a 
motor). These two concepts provide a simple way to 
address much of the functionality for many prototypes and 
proof-of-concept applications, and provide a low threshold 
[23] for novices to begin using the system to explore their 
designs. Triggers can only be linked to Actions, and Map-
From can only be linked to Map-To nodes. To support more 
complex behaviours with delays, for instance, Actions can 
be chained together, allowing a single Trigger to cause a 
sequence of Actions to execute. 

Within this framework, variables and logical operators such 
as ‘AND’ are supported as behaviours, which raises the 
ceiling of what users can do with the software. Variables 
are accessible through top-level behaviours in all TA and 
FT panels. Users can invoke actions when variables take a 
given value, set variables when a particular event occurs, 
and variables can also have their value mapped to an input, 
or have their value used as input to a ‘map from’ behaviour. 
While the use of variables introduces some complexity for 
the user, it dramatically increases the available functionality 
of the system, and allows for much richer circuit design.  

Behaviours can also define parameters that the user can 
specify. For instance, the temperature threshold that a 
‘Hotter Than’ behaviour triggers on is specified as a user-
defined parameter. If users need to specify multiple 
parameters, they can clone the parameter set, which creates 
an additional set of parameters for that behaviour that the 
user can specify through a dialog box accessible by double-
clicking the behaviour. This is useful in instances where 
multiple triggers are needed that stem from a single 
component, for instance, setting three separate temperature 
thresholds. Without this cloning functionality, users would 
have to create three separate ‘Hotter Than’ nodes, and the 
resulting circuits would use three separate temperature 
sensors.  

Generated Circuit Explorer 
To facilitate circuit selection, TAC provides users with a 
spreadsheet-like interface to inspect and explore generated 
circuits. Each potential solution to the desired behaviour is 
presented as a row in the generated circuit explorer. Users 

can sort and navigate the columns to find their desired 
circuit. 

To assist the user in selecting a circuit, TAC computes 
several metrics for each circuit. The table can be sorted by 
each of these metrics by clicking on the associated column 
header. Cost is the sum of the cost of all components used 
in the circuit. Components available is computed based in 
the local database of what components are on-hand – this is 
currently manually maintained but a future version could be 
automated and integrated with a component purchasing 
process. Difficulty is computed as a function of the number 
of components and the encoded connection methods (e.g., 
surface mount components are weighted as being more 
difficult than through-hole components). Volume and power 
consumption are computed based on the component’s 
defined parameters. Popularity and assembly time are using 
manually coded estimates for each component.  

Circuit Diagram 
Once a circuit is selected in the explorer, the corresponding 
diagram is created and displayed on the canvas. Users can 
zoom and pan the canvas to inspect the circuit and terminal 
names. A button at the top of the diagram allows users to 
render the components on a breadboard (default), or remove 
the breadboard and show the components directly wired 
together. By clicking each wire, all other wires become 
more transparent, allowing the selected wire to be 
highlighted making its connections more apparent. 
Additionally, the instruction corresponding to that wire 
becomes highlighted in the assembly instructions, giving 
the user additional context for the connection. 

Users are able to filter circuits using the component 
diagram. By hovering over each component, users can view 
details about that component, and filter circuits containing 
that component. This functionality is useful for users who 
do not have specific components on hand, or who identify 
components as being too expensive or otherwise unsuitable 
for their application.  

Assembly Instructions  
TAC automatically generates instructions once a circuit is 
selected from the table. The assembly instructions provide a 
step-by-step guide for the user to wire the resulting circuit 
together. Each step is described in text (e.g., ‘Connect the 
ground of LED1 to GND of Arduino Uno’), which exposes 
users to some of the technical terms used in circuitry to help 
build electronics knowledge. In addition, as steps in the 
interface are selected, the related connection highlights in 
the circuit diagram, giving the user a visual reference for 
the connection. 

Instructions can be further augmented, if one of the 
components specifies assembly hints in its definition. For 
instance, the LEDs in the system specify ‘Ensure the 
component is oriented the proper way – direction matters’. 
As connecting some components incorrectly can cause 
damage (e.g., capacitors, temperature sensors) or cause the 
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system to function incorrectly, these tips are intended to 
help novices avoid problems with circuit assembly. 

Firmware 
Once generated, the firmware can be inspected and directly 
edited by the user. This functionality may be useful to 
novices interested in learning more about electronics and 
programming, as it exposes them to the code that executes 
their behaviour. Exposing the firmware may encourage 
tinkering, as users can modify and upload the program 
without fear of causing an irreversible error as the original 
program can be regenerated by the system. Currently, 
changes directly to the code do not impact the rest of the 
interface (e.g., updating the authoring canvas or 
parameters). 

Presenting the firmware allows users to create arbitrarily 
complex programs by exposing the full functionality of the 
microcontroller. More advanced users may find this feature 
useful as they can use the visual programming language to 
define the basic functionality and component interactions, 
use the circuit generation and filtering to select components 
and provide the wiring, then use the firmware editor to add 
more advanced or specific functionality not exposed 
through existing behaviours. 

Once firmware has been selected and/or modified, clicking 
the upload button will compile and upload the firmware to 
the microcontroller that is attached to the USB port. 

IMPLEMENTATION 
TAC is implemented as a desktop application written in C# 
and WPF.  

Components 
Each component that TAC supports is defined using a 
declarative specification within an XML file (Figure 7). 
This format allows for the addition or modification of 
components by third-party authors. Each component is 
defined by a number of top-level parameters as well as a list 
of terminals. The top-level parameters describe the type of 
component (i.e., which requirement it fulfils), as well as its 
name, description, cost, graphical image, and whether it’s 
currently available to the user. An additional flag indicates 
if the component can be re-used or shared by other 
behaviours. Each of its terminals represents a (potential) 
electronic connection to another component in the circuit. 
Each terminal is described by its name, type of connection, 
direction of connection, terminal location within the image, 
and whether the terminal can be shared.  If specific 
terminals are accessed by behaviours directly (e.g., reading 
temperature from an analog out terminal), that terminal will 
be given a name to allow behaviours to reference it. 

The current implementation of TAC contains a variety of 
components to support a broad spectrum of behaviors. 
Several sensors and switches are currently supported 
including a temperature sensor, light sensor, accelerometer, 
infrared distance sensor, momentary switch, and sound 
sensor. A number of actuator components are also 

supported, including a number of LEDs, an audio buzzer, a 
DC motor, servo motor, and a vibrotactile motor. Currently, 
two microcontrollers are fully supported: the Arduino UNO 
and the Arduino Micro.  The database also contains a 
number of passive components, such as resistors and 
capacitors. 

Behaviours 
The supported high-level behaviours (i.e., Triggers, 
Actions, Mappings) within TAC are also defined using an 
XML syntax (Figure 7). As with components, this allows 
end users with technical knowledge to define and share new 
behaviours. A behaviour defines the components it depends 
on, the parameters it supports, as well as several code 
fragments defining the functionality. The required 
components list must match those ‘types’ defined in the 
component library. Each parameter defines a name, as well 
as a source and type. The parameter source defines how the 
parameter will be defined (i.e., by the system, component, 
or by the user). The parameter type defines what 
microcontroller resource will be used, if any (e.g., analog 
input, PWM output, etc.). A behaviour also defines code 
fragments that will be placed into a larger template to 
assemble the complete functionality. Behaviours can 
provide code that is run during initialization (setup), each 
time the state is checked (function), as well as to the global 
area of the program to define global variables or include 
additional program directives (header).  

Using this approach, both simple and more complex 
behaviours are possible. Examples of supported triggers 
are: when the temperature exceeds a threshold, when a 
device is tilted, or when a button is pressed.  

 

Figure 7: Sample definitions for a ‘button’ component (left) 
and ‘button pressed’ trigger (right). 

Circuit Generation 
To generate the circuits, TAC uses a breadth-first, 
recursive, dependency resolution. As each trigger and 
action enumerates the class of components it needs (e.g., 
‘button’), and each component lists the components it 
requires (e.g., ‘microcontroller’, or ‘resistor’), the algorithm 
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is able to explore all possible circuit solutions to the current 
mapping. As each component is added and each 
dependency is resolved, a list of consumed and available 
terminals is maintained. For example, no two components 
would be able to use the same ‘A0’ port on an Arduino, as 
it is not shareable; if a second component needing analog 
input were added to a circuit already using the ‘A0’ port, it 
would be assigned to ‘A1’. 

The circuit resolution halts when all dependencies have 
been met. As the algorithm compiles possible circuits, it 
maintains the state of each, compiling statistics such as the 
total cost, number of components, and total volume. While 
this approach is efficient and suitable for the current 
behaviour and component library, a more sophisticated 
approach will likely be necessary as the number of 
supported components increases. More complex filter 
criteria may be useful to help pare down the increased 
number of possible circuits that are returned by the system. 

Variable Types 
TAC uses three variable types to enable the generation of 
circuits: user, component, and system. 

User variables are parameters which require user input or 
configuration of a behaviour. These parameters are 
presented with a plain-language description, and reasonable 
default values. Behaviours can leverage user-defined 
variables to provide inputs and parameters to their 
functionality. For example, the ‘Hotter than’ trigger 
provides a ‘threshold’ variable which the user specifies to 
define the target threshold for the trigger to execute. 
Similarly, the ‘Display text’ action leverages these 
parameters to allow the user to specify a string (or series of 
strings) as input, as well as a Boolean input value 
(presented as a checkbox) to specify if the strings should be 
displayed in order of input, or randomly. 

Component variables are specified by the behaviour, and 
defined by the component that satisfies that behaviour. For 
instance, the ‘Hotter than’ behaviour requires a sensor that 
is able to sense temperature based on an analog voltage 
reading. Each component that satisfies this behaviour must 
specify the mapping between voltage and temperature (in 
Celsius). This mapping is defined through a component-
provided variable which specifies the functional 
relationship between voltage and temperature. 

System variables have their values specified by the system 
during the circuit-resolution process. These variables are 
used in both behaviours are components, and are used to 
specify pin mapping. With the ‘Hotter than’ example, the 
behaviour specifies that it is expecting to read a voltage 
from $analog_pin which corresponds to the voltage 
provided to the temperature sensor. The component 
providing the analog value annotates which of its terminals 
provides the $analog_pin corresponding to the temperature. 
After mapping and circuit resolution, the system replaces 
the appropriate values with the mapped values to ensure 

that the behaviour is reading the value from the appropriate 
pin (e.g., A0, A1, etc). 

Firmware Authoring 
TAC generates Arduino compatible code in response to the 
behaviours created by the user. As parameterized code 
fragments are associated to each supported Behaviour, TAC 
can combine and compile each of the fragments into a 
single executable program using the following steps. 

First, each of the parameters is replaced within the code 
fragment with its respective value (e.g., the user specified 
value, or the system determined value). The system also 
appends unique identifiers to function names and variables 
within a trigger or action, allowing for the many-to-many 
association. This replacement process operates across all 
defined triggers and actions. Once processed, the triggers 
and actions are compiled into a master template which 
assembles the header, setup, and function code for all 
defined behaviours into an Arduino-compatible format with 
setup() and loop() function declarations. Once complete, the 
assembled code is written to a file, then compiled and 
uploaded to the connected Arduino board. 

Assembly Instruction Creation 
Within TAC, instruction generation is a relatively 
straightforward process. As each terminal-to-terminal 
connection is retained during the circuit generation process, 
the system has a record of which component is connected to 
which pins. Using this knowledge, the system can generate 
the appropriate connection list using a lookup table. This 
approach is sufficient to enable users to understand which 
terminals should be connected, and supplements the 
diagram which the users can cross-reference. 

VALIDATION 
To validate that the system could support the authoring of a 
wide range of circuitry, the authors replicated the 
functionality of the fourteen projects contained within the 
Arduino starter kit5. These projects span a wide range of 
functionality, from creating and sensing digital and analog 
signals, serial communication, monitoring and changing 
program state, and include a wide variety of electronic 
components. While the functionality of each project was 
replicated (in terms of inputs and outputs), the generated 
circuit and firmware were different between the provided 
solution and the one produced by TAC due to the 
algorithmic way in which TAC generates the solutions. 

For clarity and due to space limitations, only two of the 
fourteen solutions are provided here, and contrasted with 
the solutions that accompany the starter kit.  

One representative project in the Arduino starter kit is the 
‘Light Theremin’, where a buzzer produces a tone, and the 
pitch of that tone is controlled by the amount of light falling 
on a sensor. This project requires the use of the continuous  
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Figure 8: Sample of solution for Light Theremin project. The 
left column shows the program (top) and TAC-generated 
circuit (bottom), while the right column shows the provided 
code and circuit from the Arduino starter kit. Note the 
solutions are similar in terms of the components and circuitry 
generated. 

mapping functionality (i.e., Map-From and Map-To) within 
TAC. To author this functionality within TAC, the designer 
connects a ‘Map From Brightness’ to a ‘Map To Sound 
Pitch’, and provides two sample mappings which will be 
used in the linear interpolation mapping (e.g, 10 
Lux→100Hz, 50Lux→2000Hz). The six generated circuits 
all contain four components, and generate 31 lines of code, 
while the Arduino starter kit solution uses four components 
and 29 lines of code.  

A second project from the starter kit is the ‘Spaceship 
interface’, which consists of 3 LEDs and a button. When 
the button is pressed, two of the LEDs illuminate in an 
alternating pattern; when the button is not pressed, the third 
LED lights up. With TAC, this is accomplished by using 
the ‘Button pressed’ trigger with two conditions (pressed 
and not-pressed), linked to ‘Glow’ and delay actions 
(Figure 9). All of the 108 resulting generated solutions to 
this behaviour use 9 components, and generate 105 lines of 
code, while, the provided Arduino starter kit solution use 9 
components and 30 lines of code. 

In general, the generated solutions contain more complex 
code, and often have more complex wiring schemes than 
the handcrafted, tailored alternatives in the starter kit 
examples. However, this validation demonstrates the 
breadth of the system, and also illustrates how limited input 
from the user (e.g., Mapping brightness to sound pitch) can 
be sufficient for the system to create the circuitry, software, 
and assembly instructions for the user. 

 

 

Figure 9: Sample of solution for Spaceship Interface project. 
The left column shows the program (top) and TAC-generated 
circuit (bottom), while the right column shows the provided 
code and circuit from the Arduino starter kit. 

USER STUDY 
Though TAC is able to generate a broad set of circuitry and 
software that covers the content in the introductory Arduino 
material, it is not clear if this proposed paradigm is more 
approachable to users looking to design their own circuitry. 
To better understand this, we conducted a study which 
assessed how well novice users were able to design, select, 
and assemble desired circuitry using TAC. 

As a representative task, we used the ‘Love-o-Meter’  
project from the Arduino starter kit, which was also studied 
by Booth et al. [2]. This task was chosen as it is of 
moderate difficulty for a novice, can be completed in under 
an hour, uses a variety of components and programming 
concepts, and is grounded in prior work. Participants 
completed this task using either TAC (TAC condition), or 
using the Arduino IDE (Arduino condition) as in Booth et 
al [2]. 

Participants 
Twelve individuals (8 male, M = 35, SD = 7.8 years of age) 
were recruited to participate in the study. The experiment 
lasted approximately one hour and participants received a 
$25 gift card as compensation for their time. 

Before participating, participants self-reported their prior 
experience with programming and electronics. This 
information was used to balance the participants between 
the two conditions to ensure the populations were 
comparable. Mann-Whitney U tests indicated there was no 
significant difference between the two populations in terms 
of self-rated electronics experience (U = 16.0; p = 0.82) or 
programming experience (U =12.0; p =  0.39). 
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Figure 10: Photograph of the user study setup, with the 
participant building the circuit without the use of TAC. 

Procedure 
Participants were informed that they would be building a 
circuit using an Arduino. They were also given a brief 
tutorial on breadboards demonstrating how connections can 
be made with a breadboard (i.e., row-wise and column-wise 
connections). Depending on the condition, they were either 
given a brief overview of the Arduino IDE or the TAC 
interface. For the Arduino condition, participants were 
shown the editor, the upload and verify functionality, as 
well as the web browser (Google Chrome). Within the TAC 
condition, participants were shown the authoring canvas, 
the generated circuit explorer, diagram area, as well as the 
instruction and firmware windows.  

After the introduction, participants were given a textual 
description of the functionality that they were asked to 
replicate. The text explained that their target circuit should 
use three LEDs which light up in sequence, with more 
LEDs lighting up as a temperature sensor detects hotter 
temperatures. Participants were given 45 minutes to 
complete the task, and were given all the components they 
would need including some distractor components. They 
were informed that they could use the internet to search for 
help, but were instructed not to search for the exact solution 
(e.g., do not search for ‘light three LEDs in sequence in 
response to temperature’). This procedure is the same as 
what was provided in Booth et al. [2] and describes the 
functionality of the Love-o-Meter circuit presented in the 
Arduino starter kit. 

Results 
All six of the participants using TAC completed the task 
successfully, while none of the participants without TAC 
were able to complete the task within the allotted time 
(Figure 11). These results are similar to those presented by 
Booth et al. [2] which found the majority of participants 
unable to complete the circuit. For the participants using 
TAC, the average completion time was 36 minutes (SD = 
7.4 minutes), and a Mann-Whitney U test shows this is 

significantly lower than the Arduino condition (U = 06; p < 
0.01) where all participants exceeded the 45 minute time 
frame. As none of the participants in the Arduino condition 
finished, the task was decomposed into eight subtasks 
representing observable milestones such as ‘uploaded a 
program’ ‘connected temperature sensor’ and ‘controlled an 
LED based on temperature value’. A Mann-Whitney U test 
shows a significant difference between the Arduino and 
TAC conditions (U = 0.0; p < 0.01) in terms of number of 
subtasks completed; all participants in the TAC condition 
completed all 8 tasks, participants in the Arduino condition 
completed 4.5 tasks on average. Two participants struggled, 
completing only 1 or 2 tasks, while three participants nearly 
arrived at the solution, completing 6 or 7 of the 8 subtasks. 

 

Figure 11: Graph of each participant’s total time during the 
study, separated by time spent on the computer, and time 
spent with the circuitry. 

The time users spent actively using the computer (coding, 
reading, etc.) versus the time spent working with the 
circuitry (assembling the circuit, looking at the 
components) was also compared. A Mann-Whitney U test 
shows the time spent on the computer was significantly 
different between the conditions (U = 2.5; p < 0.01). The 
time spent with the circuitry was not different between the 
two groups, likely because none of the participants in the 
Arduino condition were able to complete the task, so the 
time spent with circuitry is not reflective of the total time it 
would’ve taken if they had finished. 

Observations 
Overall, the study demonstrated that TAC enabled people 
without significant experience with circuitry to design and 
construct functional electronic circuits. One participant felt 
that after using TAC ‘I could tackle a much harder project 
(and want to) that uses sound and social media’ (P9). 

Participants found the behaviour authoring interface 
intuitive, and most participants using TAC arrived at the 
correct behaviour within 10 minutes. Some participants did 
try to use To-From mappings unsuccessfully before 
switching to the Trigger-Action paradigm. Additionally, 

                                                           
6 Note that U is zero because all values in the Arduino condition are greater than the 
TAC condition. 
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one participant used multiple ‘Hotter Than’ behaviours 
resulting in the use of 3 temperature sensors in the 
subsequent circuits, which they corrected after seeing the 
diagram. 

Several elements of the interface were observed to be quite 
useful for the novice participants, in particular the rendered 
circuit diagram. Most of the participants did not follow the 
step-by-step written instructions, but instead opted to wire 
the circuit by looking at the diagram. Occasionally, these 
participants would click on a wire in the diagram to 
highlight it and see the related text (e.g., to see what pin it 
was connected to). Participant comments reiterated the 
perceived utility of the diagram ‘The mappings between 
instructions and diagram was helpful’ (P15). ‘I liked how 
the instructions highlighted the wire that needed to be 
connected’ (P5). This behaviour of consulting the diagram 
was not limited to participants using the TAC system. 
Participants in the Arduino condition often consulted 
photos or diagrams when trying to determine how to wire 
and place components, even when there were textual 
descriptions on the same page. 

While participants were able to successfully navigate and 
select a circuit within the generated circuit explorer, many 
were unsure which circuit they should choose. Some opted 
to minimize cost, while others chose at random. Few 
seemed to note the ‘Components Available’ column was 
relevant, indicating which circuits could be built with the 
components they were given. User feedback suggests that 
the ‘Circuit options [are] a little intimidating’ (P7). One 
explanation for this is that the task was a laboratory study, 
and elements such as cost and popularity may not have 
relevance. 

While most participants used the firmware window solely 
to upload the code to the microcontroller, one participant 
with some programming experience used it to edit the 
parameters during testing. Before uploading, he first 
skimmed the code to get a basic understanding, then, when 
trying to determine which threshold parameter should be 
used to trigger the lights, he edited the code directly and 
uploaded it. While the same operation can be done using 
the visual programming interface, it took less effort and was 
perhaps more intuitive to directly modify the code. 

FUTURE WORK  
Our work has shown that the use of goal-driven design to 
define circuitry can enable novice users to design and 
construct electronic devices that they may otherwise be 
unable to. However, there are still a number of limitations 
to TAC and areas of future work. 

While TAC can generate circuits and software, neither the 
code, nor the diagram is optimized for learnability. More 
research is needed to optimize component placement and 
orientation on the breadboard, optimize wiring paths by 
minimizing crossings and total distance. Likewise, more 
research is needed to determine how to make the code more 

human-readable, to provide context on the function of each 
part of the code, and the purpose of the fragment within the 
larger program. If solved in future projects, then users could 
more effectively learn electronics from the system’s output, 
and it could be capable of generating custom tutorials for 
students. 

The system is currently limited to generating Arduino-
based circuitry and further work is needed to support the 
generation of circuits that do not include a microcontroller. 
For example, having an LED glow when a button is pressed 
only requires a button, resistor, LED and battery, yet with 
TAC, supporting this behaviour also requires an Arduino, 
which drastically increases the cost and complexity. 

The current system is focused on novice users, however, the 
application of generative design and design synthesis has 
many use cases amongst expert users as well. More 
research is needed to understand potential use cases of 
professional embedded developers, and to better determine 
how generative design can be applied to assist their 
workflows. 

Lastly, as the circuit and software generation is an 
automated process, it isolates the user from how the circuit 
functions, making debugging difficult if something goes 
wrong. As such, the user does not know if the issue is with 
their program, or their assembly of the circuits (and 
components). One potential method to mitigate this is by 
integrating a software simulator so the user can verify their 
logic is correct before assembling the circuit. However, 
more research is needed to provide tools that allow users to 
more accurately debug within this paradigm, perhaps 
integrating new technology, such as Toastboard [9]. 

CONCLUSION 
This paper presented TAC, the first system capable of 
leveraging generative design to create a multitude of design 
variants for circuitry. The system has a low threshold for 
novices to begin designing circuitry, and provides the 
circuit diagram, code, and assembly instructions to enable 
them to construct a functioning circuit. Through validation 
by recreating existing projects, and a user study comparing 
it to the Arduino baseline, TAC was shown to be useful and 
usable by novice circuit designers, and more efficient than 
novices using more traditional approaches. 
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